
1

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 1

CS 537
Lecture 18

Distributed File Systems

Michael Swift

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 2

Distributed File Systems

• One of the most common uses of distribution is to
provide distributed file access through a distributed
file system

• Basic idea: support sharing of files and sharing of
devices (disks) network wide.

• Generally provides a “timesharing system” type view
of a centralized file system, but with distr.
Implementation.

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 3

Basic Issues

• File naming
– how are files named?
– are those names location transparent (is the file location

visible to the user)?
– are those names location independent?

• do the names change if the file moves?
• do the names change if the user moves?

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 4

Basic Issues

• Caching
– caching exists for performance reasons
– where are file blocks cached?

• On the file server?
• On the client machine?

• Coherency
– what happens when a cached block/file is modified
– how does a node know when its cached blocks are out of

date?

2

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 5

Issues

• Replication
– replication can exist for performance of availability
– can there be multiple copies of a file in the network?
– if multiple copies, how are updates handled?
– what if there’s a network partition and clients work on

separate copies?
– at what level is replication visible?

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 6

Issues

• Performance
– what is the cost of remote operation?
– what is the cost of file sharing?
– how does the system scale as the number of clients grows?
– what are the performance limitations: network, CPU, disks,

protocols, data copying?

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 7

Example Systems: NFS

• The Sun Network File System (NFS) has become a
common standard for distributed UNIX file access.

• NFS runs over LANS (even over WANs -- slowly).
• Basic idea: allow a remote directory to be “mounted”

(spliced) onto a local directory, giving access to that
remote directory and all its descendants as if they
were part of the local hierarchy.

• Ex: I mount /usr/swift on Node1 onto /students/foo
on Node2. Users on Node2 can then access my files
as /students/foo. If I had a file /usr/swift/myfile, users
on Node2 see it as /students/foo/myfile.

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 8

NFS

• NFS defines a set of RPC operations for remote file
access:
– searching a directory
– reading directory entries
– manipulating links and directories
– reading/writing files

• Every node may be both a client and server.

3

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 9

Remote Procedure Call

• Basic problem when dealing with machine across a
network: how do you write the code to communicate?

• Option 1: messages
– Programmer copies message into an array of bytes, “sends”

to other computer, “receives” an array of bytes in response
at some point

• Option 2: RPC
– Make a procedure call that executes on the other side
– Tool generates code to copy arguments into a message,

send data, unpack data, call server code, copy result into a
message, send back, receive reply, and return to caller

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 10

NFS Implementation

• NFS defines new layers in the Unix file system

System Call Interface

Virtual File System

buffer cache/ inode table

(local files) (remote files)

UFS NFS

The virtual file system provides a standard

interface, using vnodes as file handles. A vnode

describes either a local or remote file.

RPCs to other (server) nodes

RPC requests from remote clients, and
server responses

• Buffer cache caches remote file blocks and attributes

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 11

NFS Caching and Consistency

• NFS clients cache blocks of files in memory
– Part of standard buffer cache

• On an open, the client asks the server whether its
cached blocks are up to date.
– If not, must refetch file

• Once a file is open, multiple clients can write it
– What is the result of multiple writes?

• Modified data is flushed back to the server every 30
seconds.
– What does a reader see?

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 12

The Andrew File System
• Developed at CMU to support all of its student

computing.
• Consists of workstation clients and dedicated file

server machines.
• Workstations have local disks, used to cache files

being used locally (originally whole files, now 64K file
chunks).

• Andrew has a single name space -- your files have
the same names everywhere in the world.

• Andrew is good for distant operation because of its
local disk caching: after a slow startup, most
accesses are to local disk.

4

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 13

AFS Caching and Consistency
• Need for scaling led to reduction of client-server message traffic.
• Once a file is cached, all operations are performed locally.

– Cache is on disk, so normal FS and FS operations work here
• On close, if the file is modified, it is replaced on the server.

– What happens when multiple clients share a file?
• The client assumes that its cache is up to date, unless it

receives a callback message from the server saying otherwise.
On file open, if the client has received a callback on the file, it
must fetch a new copy; otherwise it uses its locally-cached
copy.
– How does this compare to NFS?

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 14

Distributed File Systems

• There are a number of issues to deal with here.
• Performance is always an issue; there is a tradeoff

between performance and the semantics of file
operations (e.g., for shared files).

• Caching of file blocks is crucial in any file system,
distributed or otherwise. As memories get larger,
most read requests can be serviced out of file buffer
cache (local memory). Maintaining coherency of
those caches is a crucial design issue.

• Newer systems are dealing with issues such as
disconnected file operation for mobile computers.

