
1

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 1

CS 537
Lecture 19

Virtual Machines

Michael Swift

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 2

Background Information:
Execution Stack

I/O devices
and

Networking

Memory
Translation

Execution Hardware

Application
Programs

Main
Memory

Operating System

Libraries

System Interconnect
(bus)

ISA

System Calls

Applications

Hardware

•Lots of applications
•One OS

•Why?
•Talks to single
instance of HW

Interfaces

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 3

Virtual Machines

A thin software layer that sits between
Intel hardware and the operating system—

virtualizing and managing all hardware resources

Intel Architecture

Virtual Machine Monitor

Win
2000

Win
NT Linux Win

2000

App App App App

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 4

Old idea from the 1960s

• IBM VM/370 – A VMM for IBM mainframe
– Multiple OS environments on expensive hardware
– Desirable when few machine around

• Popular research idea in 1960s and 1970s
– Entire conferences on virtual machine monitor
– Hardware/VMM/OS designed together

• Interest died out in the 1980s and 1990s.
– Hardware got cheap
– Operating systems got more more powerful (e.g multi-user)

2

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 5

A return to Virtual Machines
• Disco: Stanford research project (1996-):

– Run commodity OSes on scalable multiprocessors
– Focus on high-end: NUMA, MIPS, IRIX

• Hardware has changed:
– Cheap, diverse, graphical user interface
– Designed without virtualization in mind

• System Software has changed:
– Extremely complex
– Advanced networking protocols
– But even today :

•Not always multi-user
•With limitations, incompatibilities, …

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 6

Virtual Machine Monitors
• A virtual machine monitor virtualizes the hardware to provide

a virtual machine in which:
– All commands/instructions that reference privileged processor state

refer to a software copy
– All commands/instructions that refer to specific physical resources

(e.g., memory pages) refer to virtual resources selected by the
VMM

– All commands/instructions that refer to specific physical devices
refer to software that implements/emulates that device interface

– All interrupts from physical devices are handled by VMM
– VMM must be at higher privilege level than guest VM, which

generally runs in user mode
⇒Execution of privileged instructions handled by VMM

• A VMM implements the hardware interface in software

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 7

Virtual Machine Monitors (VMMs)

• Virtual machine monitor (VMM) or hypervisor is
software that supports VMs

• VMM determines how to map virtual resources to
physical ones

• Physical resource may be time-shared, partitioned, or
emulated in software

• VMM much smaller than a traditional OS;
– Isolation portion of a VMM is ≈ 10,000 lines of code

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 8

Virtual Machine Types

• Pure/Para-virtualized
– Pure virtualized systems present the interface of real,

existing HW and can run unmodified operating systems
– Para virtualized systems present a new, simpler interface

but require OS modifications

• Type 1 / Type 2
– Type 1 VMMs (called Hypervisors) sit just above the HW

and virtualize the complete hardware
• Example: Xen, VMware ESX server

– Type 2 VMMs run within an OS, and rely on OS services to
manage HW

• Example: QEMU, VMware Worksation

3

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 9

Hosted (Type 2) VMware Architecture

VMware achieves
both near-native
execution speed
and broad device
support by
transparently
switching*
between Host
Mode and VMM
Mode.

Guest OS Applications

Guest Operating System

Host OS Apps

Host OS

PC HardwareDisks Memory CPUNIC

VMware App Virtual Machine

VMware Driver Virtual Machine Monitor

The VMware Virtual
machine monitor allows
each guest OS to directly
access the processor
(direct execution)

VMware, acting as an
application, uses the host
to access other devices
such as the hard disk,
floppy, or network card

VMM ModeHost Mode

*VMware typically switches modes 1000 times per second

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 10

Native (Type 1) Architecture

Memory nicnicNICdiskCPU

x86 SMP
Hardware

Console
OS

VMM

Guest
OS

Guest
OS

Guest
OS

Guest
OS

VMkernel
Scheduler Memory

Mgmt
SCSI
Driver

Ethernet
Driver

VMMVMMVMM

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 11

Comparison

• Type 1 (native)
– All OS’s on the machine more slowly
– All drivers run in the VMM (VMware) or a special guest OS

(Xen)
– System management is done in a guest OS

• Type 2 (hosted)
– Host OS runs full speed, guests more slowly
– All drivers run in host OS, leverage large code base
– System management is done in host OS

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 12

0
VMM

Virtualization through Ring
Compression

1
2

3 userVirtual Machine
Monitor (VMM) runs
at ring 0

Kernel(s) run at
ring 1

Requires that CPU
is virtualizable

kernel

4

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 13

Virtualization Technology

• Basic approach: execute privileged software at
unprivileged level
– Privileged instructions will trap: I/O, memmgmt
– Emulate behavior of privileged instructions in software in

VMM

• VMM has complete control over the HW
– Presents another layer of virtual memory under the OS with

a separate page table
– Presents a different set of devices to the OS

• What happens to instructions that return different
results in priv. mode and normal mode?

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 14

Classification of processor architectures
• Strictly virtualizable processor architectures

– Can build a VMM based on trap emulation exclusively
• No software running inside the VM cannot determine the presence of

the VMM (short of timing attacks)
– Examples: IBM S/390, DEC Compaq Intel Alpha, PowerPC

• (Non-strictly) virtualizable processor architectures
– Trap emulation alone is not sufficient and/or not complete

• E.g. instructions have different semantics at various levels (sufficient)
• E.g Some software sequences can determine the presence of the VMM

(complete)
– Examples: IA-32, IA-64

• Non virtualizable processor architectures
– Basic component missing (e.g. MMU, …)

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 15

ISA Impact on Virtual Machines
• Consider x86 PUSHF/POPF instructions

– Push flags register on stack or pop it back
– Flags contains condition codes (good to be able to save/restore)

but also interrupt enable flag (IF)
• Pushing flags isn’t privileged

– Thus, guest OS can read IF and discover it’s not the way it was set
• VMM isn’t invisible any more

• Popping flags in user mode ignores IF
– VMM now doesn’t know what guest wants IF to be
– Should trap to VMM

• Possible solution: modify code, replacing pushf/popf with special
interrupting instructions
– But now guest can read own code and detect VMM

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 16

Virtualizing x86

• Binary translation
– Convert kernel code into a new binary that calls into VMM

for all privileged instructions / instructions that do something
different between kernel/user mode (VMware)

• Emulation
– Emulate all instructions in kernel mode (VirtualPC)

• ParaVirtualization
– Change kernel code to avoid all privileged instructions
– Issue explicit HyperCalls into VMM to provide these

services

• New hardware
– Intel VT, AMD Pacifica adds new ring (-1) that traps correctly

5

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 17

Virtualizing Memory

• VMMs present virtual memory to an OS as physical
memory
– Allows the VMM to reclaim pages, swap, give to another VM

• use 3 layer translation: virtual, real, physical
– OS manages Virtual -> real translation with existing page

tables
– VMM manages real -> physical translation

• How?
– Trap-on-write to OS page table
– Shadow page table given to hardware that maps virtual ->

physical directly

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 18

Virtualizing Devices

• Virtualization by Emulation
– Trap on read/write of device registers
– Emulate device action in VMM

• Virtualization by Replacement
– Write a new driver for the class of device (e.g., network)
– Network driver explicitly calls into VMM to perform work

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 19

Virtual Hardware

Floppy Disks

 Parallel Ports Serial/Com Ports

Ethernet

Keyboard

Mouse

Monitor
(VMM)

IDE Controller SCSI Controller

Sound Card

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 20

Virtualizing a Network Interface

Host OS

PC HardwarePhysical NIC

VMApp

VMDriver

Guest OS

VMM

P
hy

si
ca

l E
th

er
ne

t

NIC Driver

NIC Driver

Virtual Bridge

Virtual Network Hub

6

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 21

x86 SMP
Hardware

Intra-system networking

VMware
Server
VMM

Stub
Driver

Stub
Driver

Stub
Driver

NIC
specific
drivers

• Executes at memory speed

Stub
Driver

Virtual Network

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 22

Virtualizing Disks

• Sharing
– Networking shared a single device through time multiplexing
– Disks share through space multiplexing
– Some device might not be shared, but just assigned to a

single VMM, which can run the driver itself
• USB flash drive

• VMM makes a file in the FS act like a disk to the
VMM
– Can grow incrementally as disk is used
– Can be copied between systems

• Done by implementing a SCSI or IDE device that
talks to the FS

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 23

Uses of Virtual machines

• Suspend/resume
– All OS state controlled by VMM, so it can be saved to disk

• Server consolidation
– Take 10 servers, run all 10 in their own OS on one machine

• Testing
– Run all test platforms on one machines

• Security
– Run insecure apps in one VM
– Run secure apps in another VM with strong firewall around it

• Migration
– Move a VM running on one machine

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 24

Scenario # 1:
Server Consolidation

Web Server

App Server

Web Server

App Server

Database
Server

Database
Server

App Server

App Server

Web Server

Web Server

7

12/6/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 25

Scenario # 2: Security

Classified
VM

VPN

Internet
VM

Firewall

SE-Linux

