
1

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 1

CS 537
Section 1: The Shell Project

Michael Swift

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 2

Project Goal
• Get used to programming in C and Unix
• Learn how the Unix shell works
• Understand process control functions

– create
– wait

• Understand string processing
– strtok()

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 3

What is a shell?
• Command line interpreter

– You type “ls /etc”
– The shell invokes the first parameter as a command, with

the remainder as the parameters
– eg: exec(ls,”/etc”)

• Built-in commands
– Most commands are separate executable programs

• ls, rm, mv, make, gcc
– Some commands are interpreted by the shell

• cd, exit

• In your shell, the only built-in command is “quit”

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 4

Interactive vs Batch
• Interactive

– User types commands in, hits return to invoke them

• Batch
– shell reads from an input file

• What is the difference?
– where the commands come from

• How do you code this?
– Change which file you read from



2

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 5

File I/O in C
• Standard commands for reading from a file:

– struct FILE * f = fopen(filename,mode)
• mode = “r”, “w” plus some others

– size_t bytes = fread(buffer, rec_size, rec_num, f)
• read rec_size * rec_num bytes from f
• returns number of bytes read
• returns zero if no data left
• ignores line numbers

• char * s = fgets(string_buf, string_len, f)
– reads up to string_len-1 charactess
– null terminates string
– include newline
– return NULL if end-of-file

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 6

End of file
• What happens if the input file ends without a “quit”?

– You must detect it
– This can occur if a user enters CTRL-D

• How?
– Error return from input routines
– feof() tells you explicitly

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 7

Printing errors
• C has 3 standard files prepared for you

– stdin = input
– stdout = output
– stderr = error output

• printf(“foo”) == fprint(stdout,”foo”)
• scanf(“%s”,str) == fscanf(stdin,”%s”, str)
• fprintf(stderr,”Panic!”) prints an error message

separately
– Why?

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 8

Process Control
• Your shell should execute the next command line
after the previous one terminates
– you must wait for any programs that you launch to finish

• You can launch multiple simultaneous commands
with “;” separating them (not needed at the end)
– ls -l ; cat file
– You need to wait for ls and cat to finish here



3

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 9

Hints
• A shell is a loop

– read input
– execute program
– wait program
– repeat

• Useful routines
– fgets() for string parsing
– strtok() for parsing

• Executing commands
– fork() creates a new process
– execvp() runs a new program and does path processing
– wait(), waitpid() waits for a child process to terminate

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 10

Managing your code
• Be sure to keep old versions in case you delete

something useful
– Easy technique: a backup (or more) directories
– Better technique: revision control

• cvs: concurrent version control
• stores history of programs
• can commit changes when you have working code, or as a

checkpoint of your work.


