
1

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 1

CS 537
Section

Michael Swift

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 2

Project 3: Simulating VM and
Scheduling

• Your task (should you choose to accept it):
– Read in a trace of programs and memory references
– Simulate the behavior of an OS
– Print out performance results

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 3

Trace based simulation (T=13)

2011Word

20010iTunes

0.53gcc

1.31FireFox

CPUStartName Simulator

Running:
Word

Ready

iTunes

Blocked

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 4

Scheduling simulation
• Keep track of each process state:

– running
– ready
– blocked

• Make a scheduling decision when events occur:
– new process arrives
– timeslice expires
– I/O completes

• You will do simple round/robin scheduling
• There are 4 samples: sched-trace.tiny, sched-

trace.small, sched-trace.medium, sched-trace.large

2

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 5

Trace Base Simulation

0x50

0x60

0x40

0x30

0x10

0x10

Memory Trace Simulator

0x60

0x40

0x30

0x50

In Mem

0x10

On Disk

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 6

Memory Simulation
• On each memory reference

– Check if page is in memory.
• If so, continue
• If not, page fault

– suspend process
– issue disk request
– run next ready process

• You need to maintain
– Page table for each process, saying where in memory its pages are

(on disk or in memory)
• You do not need to maintain

– A precise physical - virtual mapping
– Just knowing that a page is in memory or on disk is enough

• Note: the traces are big (5MB each) -- don’t copy them if you
don’t need to.

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 7

Disk simulation
• To handle page faults, you must be able to move

data between memory and disk
• Saving a page is free for this assignment
• Reading a page takes 1000 cycles

– Process needing a page must wait this long for the page to
come off disk

– Only one page at a time can be read (e.g. 2 pages == 2000
cycles)

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 8

Overall simulator structure

Disk
Sim

Mem
Sim

Sched
Sim

Process
Sim

Run for a cycle DONE or
FAULT

Ref 0xADDR

O.K. or FAULT

Process P runnable

Read a page
for process P

3

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 9

PseudoCode for Main Loop
while (1) {
 load_processes_that_start_this_cycle(time);
 check_for_timer_interrupt(time);
 check_for_disk_completion(time);
 running_process = check_for_context_switch_completion(time);
 if (running a process) {
 didFault = simulate_one_instruction();
 if (didFault) {
 enqueue(blocked,running process)
 start_context_switch();
 }
}

•Notes:
•Sometimes nothing happens for a while, if nothing is runnable
you can skip ahead

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 10

How to do this project
• Come up with a design

– Break the problem into modules
– Figure out what each module does
– Figure out the interface

• function calls in to the module
• function calls out of the module

• Write and test modules separately
– scheduling simulator
– disk simulator
– memory simulator

• Integrate them all

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 11

Schedule
• Next week: come up with a plan
• Two weeks: have standalone simulators working
• After that: integrate it all and run experiments

