
1

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

1

CS 537
Lecture 8

Paging and Page Replacement

Michael Swift

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

2

Hardware and Kernel structures for
paging

•  Hardware:
–  Page table base register
–  TLB

•  Software:
–  Page table

•  Virtual --> physical or virtual --> disk mapping
–  Page frame database

•  One entry per physical page
•  Information on page, owning process

–  Swap file

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

3

Page Frame Database
/*	
 * Each physical page in the system has a struct page associated with	
 * it to keep track of whatever it is we are using the page for at the	
 * moment. Note that we have no way to track which tasks are using	
 * a page.	
 */	
struct page {	
 unsigned long flags; 	 	// Atomic flags: locked,referenced,dirty,slab,disk	
 atomic_t _count; 	 	// Usage count, see below. */	
 atomic_t _mapcount; 	 	// Count of ptes mapped in mms,	

	 	 	// to show when page is mapped	
	 	 	// & limit reverse map searches.	

struct {	
 unsigned long private; 	 // Used for managing pages used in file I/O	
 struct address_space *mapping; // Used for memory mapped files	
 };	
 pgoff_t index; 	 	 // Our offset within mapping. */	
 struct list_head lru; 	 // Lock on Pageout list, active_list	
 void *virtual; 	 	 // Kernel virtual address *	
};	

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

4

Shared memory
•  Exploit level of indirection between VA and PA

•  regions of two separate processes’ address spaces map to the
same physical frames

–  read/write: access to share data
–  execute: shared libraries!

•  will have separate PTEs per process, so can give different
processes different access privileges

•  must the shared region map to the same VA in each process?

2

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

5

Saving memory to disk
•  When there is not enough memory for all our processes, the OS

can copy data to disk and re-use the memory for something else
–  Copying a whole process is called “swapping”
–  Copying a single page is called “paging”

•  Where does data go?
–  If it came from a file and was read only, it stays in the file

•  E.g. executable code
–  Unix: a swap partition

•  A region of the disk reserved for “backing store”
–  Windows: a swap file

•  A designated file in the regular file system

•  When does data move?
–  Swapping: in advance of running a process
–  Paging: when a virtual page is accessed

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

6

Demand Paging
•  We’ve hinted that pages can be moved between

memory and disk
–  this process is called demand paging
–  OS uses main memory as a (page) cache of all of the data

allocated by processes in the system
•  initially, pages are allocated from physical memory frames
•  when physical memory fills up, allocating a page in requires

some other page to be evicted from its physical memory frame
–  evicted pages go to disk (only need to write if they are dirty)

•  to a swap file
•  movement of pages between memory / disk is done by the OS
•  is transparent to the application

–  except for performance…

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

7

Why does this work?

•  Locality!
–  temporal locality

•  locations referenced recently tend to be referenced again soon
–  spatial locality

•  locations near recently references locations are likely to be
referenced soon (think about why)

•  Locality means paging can be infrequent
–  once you’ve paged something in, it will be used many times
–  on average, you use things that are paged in
–  but, this depends on many things:

•  degree of locality in application
•  page replacement policy and application reference pattern
•  amount of physical memory and application footprint

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

8

Why is this “demand” paging?

•  Think about when a process first starts up:
–  it has a brand new page table, with all PTE valid bits ‘false’
–  no pages are yet mapped to physical memory
–  when process starts executing:

•  instructions immediately fault on both code and data pages
•  faults stop when all necessary code/data pages are in memory
•  only the code/data that is needed (demanded!) by process

needs to be loaded
•  what is needed changes over time, of course…

3

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

9

Page Faults
•  What happens to a process that references a VA in a page that

has been evicted?
–  when the page was evicted, the OS sets the PTE as invalid and

stores (in PTE) the location of the page in the swap file
–  when a process accesses the page, the invalid PTE will cause an

exception (page fault) to be thrown
–  the OS will run the page fault handler in response

•  handler uses invalid PTE to locate page in swap file
–  With multiple files, how do you know which?

•  handler reads page into a physical frame, updates PTE to point to it
and to be valid

•  handler restarts the faulted process
•  But: where does the page that’s read in go?

–  have to evict something else (page replacement algorithm)
•  OS typically tries to keep a pool of free pages around so that

allocations don’t inevitably cause evictions

Page Fault
•  If there is a reference to a page, first reference to

that page will trap to operating system:
 page fault
1. Operating system looks at another table to

decide:
–  Invalid reference ⇒ abort
–  Just not in memory

2. Get empty frame
3. Swap page into frame
4. Reset tables
5. Set validation bit = v
6. Restart the instruction that caused the page fault

Steps in Handling a Page Fault Copy-on-Write
•  copy-on-write (COW), e.g. on fork()

•  instead of copying all pages, created shared mappings of parent pages
in child address space

–  make shared mappings read-only in child space
–  when child does a write, a protection fault occurs, OS takes over and can

then copy the page and resume client

•  Copy-on-Write (COW) allows both parent and child processes to
initially share the same pages in memory

•  If either process modifies a shared page, only then is the page
copied

•  COW allows more efficient process creation as only modified
pages are copied

•  Free pages are allocated from a pool of zeroed-out pages

4

Before Process 1 Modifies Page C After Process 1 Modifies Page C

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

15

A cool trick

•  Memory-mapped files
–  instead of using open, read, write, close

•  “map” a file into a region of the virtual address space
–  e.g., into region with base ‘X’

•  accessing virtual address ‘X+N’ refers to offset ‘N’ in file
•  initially, all pages in mapped region marked as invalid

–  OS reads a page from file whenever invalid page accessed
–  OS writes a page to file when evicted from physical memory

•  only necessary if page is dirty

Memory-Mapped Files
•  Memory-mapped file I/O allows file I/O to be treated as routine

memory access by mapping a disk block to a page in memory

•  A file is initially read using demand paging. A page-sized portion
of the file is read from the file system into a physical page.
Subsequent reads/writes to/from the file are treated as ordinary
memory accesses.

•  Simplifies file access by treating file I/O through memory rather
than read() write() system calls

•  Also allows several processes to map the same file allowing the
pages in memory to be shared

5

Memory Mapped Files

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

18

Evicting the best page

•  The goal of the page replacement algorithm:
–  reduce fault rate by selecting best victim page to remove
–  the best page to evict is one that will never be touched again

•  as process will never again fault on it
–  “never” is a long time

•  Belady’s proof: evicting the page that won’t be used for the
longest period of time minimizes page fault rate

•  Rest of this lecture:
–  survey a bunch of replacement algorithms

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

19

#1: Belady’s Algorithm

•  Pick the page that won’t be used for longest time in
future
–  Provably optimal lowest fault rate (remember SJF?)

•  Why?
–  Problem: impossible to predict future

•  Why is Belady’s algorithm useful?
–  as a yardstick to compare other algorithms to optimal

•  if Belady’s isn’t much better than yours, yours is pretty good

•  Is there a lower bound?
–  unfortunately, lower bound depends on workload

•  but, random replacement is pretty bad

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

20

#2: FIFO

•  FIFO is obvious, and simple to implement
–  when you page in something, put in on tail of list
–  on eviction, throw away page on head of list

•  Why might this be good?
–  maybe the one brought in longest ago is not being used

•  Why might this be bad?
–  then again, maybe it is being used
–  have absolutely no information either way

•  FIFO suffers from Belady’s Anomaly
–  fault rate might increase when algorithm is given more

physical memory
•  a very bad property

6

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

21

Example of Belady’s Anomaly
Page
Requests 3 2 1 0 3 2 4 3 2 1 0 4

Newest Page 3 2 1 0 3 2 4 4 4 1 0 0
3 2 1 0 3 2 2 2 4 1 1

Oldest Page 3 2 1 0 3 3 3 2 4 4
Page
Requests 3 2 1 0 3 2 4 3 2 1 0 4

Newest Page 3 2 1 0 0 0 4 3 2 1 0 4
3 2 1 1 1 0 4 3 2 1 0

3 2 2 2 1 0 4 3 2 1
Oldest Page 3 3 3 2 1 0 4 3 2

(red italics indicates page fault)

3 pages

4 pages

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

22

#3: Least Recently Used (LRU)

•  LRU uses reference information to make a more
informed replacement decision
–  idea: past experience gives us a guess of future behavior
–  on replacement, evict the page that hasn’t been used for the

longest amount of time
•  LRU looks at the past, Belady’s wants to look at future

–  when does LRU do well?
•  when does it suck?

•  Implementation
–  to be perfect, must grab a timestamp on every memory

reference and put it in the PTE (way too $$)
–  so, we need an approximation…

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

23

Approximating LRU

•  Many approximations, all use the PTE reference bit
–  keep a counter for each page
–  at some regular interval, for each page, do:

•  if ref bit = 0, increment the counter (hasn’t been used)
•  if ref bit = 1, zero the counter (has been used)
•  regardless, zero ref bit

–  the counter will contain the # of intervals since the last
reference to the page

•  page with largest counter is least recently used

•  Some architectures don’t have PTE reference bits
–  can simulate reference bit using the valid bit to induce faults

•  hack, hack, hack

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

24

#4: LRU Clock
•  AKA Not Recently Used (NRU) or Second Chance

–  replace page that is “old enough”
•  Arrange all physical page frames in a big circle (clock)

•  just a circular linked list
–  a “clock hand” is used to select a good LRU candidate

•  sweep through the pages in circular order like a clock
•  if ref bit is off, it hasn’t been used recently, we have a victim

–  so, what is minimum “age” if ref bit is off?
•  if the ref bit is on, turn it off and go to next page

–  arm moves quickly when pages are needed
–  low overhead if have plenty of memory

•  if memory is large, “accuracy” of information degrades
–  add more hands to fix

•  SHOW EXAMPLE!

7

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

25

Another Problem: allocation of frames

•  In a multiprogramming system, we need a way to
allocate physical memory to competing processes
–  what if a victim page belongs to another process?
–  family of replacement algorithms that takes this into account

•  Fixed space algorithms
–  each process is given a limit of pages it can use
–  when it reaches its limit, it replaces from its own pages
–  local replacement: some process may do well, others suffer

•  Variable space algorithms
–  processes’ set of pages grows and shrinks dynamically
–  global replacement: one process can ruin it for the rest

•  linux uses global replacement

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

26

#5: 2nd Chance FIFO
•  LRU Clock is a global algorithm

–  It looks at all physical pages, from all processes
–  Every process gets its memory taken away gradually

•  Local algorithms: run page replacement separately for each process
•  2nd Chance FIFO:

–  Maintain 2 FIFO queues per process
–  On first access, pages go at end of queue 1
–  When the drop off queue 1, page are invalidated and move to queue 2
–  When they drop off queue 2, they are replaced
–  If they are accessed in queue 2, they are put back on queue 1

•  Comparison to LRU clock:
–  Per-process, not whole machine
–  No scanning
–  Replacement order is FIFO, not PFN
–  Used in Windows NT, VMS

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

27

Important concept: working set model

•  A working set of a process is used to model the
dynamic locality of its memory usage
–  i.e., working set = set of pages process currently “needs”
–  formally defined by Peter Denning in the 1960’s

•  Definition:
–  WS(t,w) = {pages P such that P was referenced in the time

interval (t, t-w)}
•  t – time, w – working set window (measured in page refs)
•  a page is in the working set (WS) only if it was referenced in the

last w references

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

28

#6: Working Set Size
•  The working set size changes with program locality

–  during periods of poor locality, more pages are referenced
–  within that period of time, the working set size is larger

•  Intuitively, working set must be in memory, otherwise you’ll
experience heavy faulting (thrashing)
–  when people ask “How much memory does Netscape need?”,

really they are asking “what is Netscape’s average (or worst case)
working set size?”

•  Hypothetical algorithm:
–  associate parameter “w” with each process = # of unique pages

referenced in the last “t” ms that it executed
–  only allow a process to start if it’s “w”, when added to all other

processes, still fits in memory
•  use a local replacement algorithm within each process (e.g. clock, 2nd

chance FIFO)

8

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

29

Thrashing
•  What the OS does if page replacement algo’s fail

–  happens if most of the time is spent by an OS paging data back
and forth from disk

•  no time is spent doing useful work
•  the system is overcommitted
•  no idea which pages should be in memory to reduced faults
•  could be that there just isn’t enough physical memory for all processes

–  solutions?
•  Yields some insight into systems research[ers]

–  if system has too much memory
•  page replacement algorithm doesn’t matter (overprovisioning)

–  if system has too little memory
•  page replacement algorithm doesn’t matter (overcommitted)

–  problem is only interesting on the border between overprovisioned
and overcommitted

•  many research papers live here, but not many real systems do…

10/9/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

30

Summary
•  demand paging

–  start with no physical pages mapped, load them in on demand
•  page replacement algorithms

–  #1: Belady’s – optimal, but unrealizable
–  #2: Fifo – replace page loaded furthest in past
–  #3: LRU – replace page referenced furthest in past

•  approximate using PTE reference bit
–  #4: LRU Clock – replace page that is “old enough”
–  #5: 2nd Chance FIFO – replace local page that is “old enough”
–  #6: working set – keep set of pages in memory that induces the minimal

fault rate
•  local vs. global replacement

–  should processes be allowed to evict each other’s pages?

