CS 537 Lecture 10 Swapping

Michael Swift

10/22/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift

Example of assigning

- Person a,b,c report what their peers do:
 - a: b did 33%, c did 33%
 - b: a did 50%, c did 0%
 - c: b did 50%, a did 20%
- · Totals:
 - a got 50/50+20/70 = 1.28
 - b got 33/66+50/70 = 1.21
 - c got 33/66+0/50 = 0.5
- · So group grade =
 - percentage on project (xx/80) X
 - 20 possible points X
 - your score from your peers: if project was perfect, A gets a 105, B gets 104, C gets 90

3

10/22/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arnaci-Dussea Michael Swift

Group grading

- · The project grade is:
 - 50% functionality
 - 30% code and write-up
 - 20% group grade
- · The group grade:
 - We distribute the rest of the grade among the group
 - Example:
 - if you get 100% grades for functionality and code/write-up, you can distribute a 100% grade for the group (60 points total among 3 people)
 - If you get 66% grade on the results, you distribute 40 points through your group
- · How should we assign this?
 - Evenly: split in 3 ways
 - You assign to your peers

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift

2

Swapping Pages

- · In this lecture:
 - When do pages get swapped
 - Where do they get put on disk?

10/22/09

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift

4

When to swap

- The OS may write pages to disk and free memory two times
 - in the background, to make sure there are free pages in the future
 - on demand, when there is memory available
- · Why have both?

10/22/09

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift

5

Page fault to an inactive / free page

- What happens if a program references a page that is in the process of being written?
 - It can still use it without delay; page still contains data
- When should the OS clear the contents of a page?
 - When put on free list: don't have to clear it before returning it
 - When returned from allocator: can still use data on page fault to original virtual address

10/22/09

© 2004-2007 Ed Lazowska, Hank Levy, Andrea an Remzi Arnaci-Dussea, Michael Swift 7

Background swapping

- Swap Daemon (a kernel process) periodically wakes up and scans pages
 - Runs clock algorithm or adjusts working set sizes
 - Moves pages from "active" list in use to "inactive list" candidate for eviction
- · Clean and dirty pages treated differently
 - If a page is clean, it can be reused immediately
 - · can put on free list
 - If a page is dirty, is must be written back first
 - · swap daemon tries to write sets of pages at a time

10/22/09

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift .

Where do pages go on disk?

- Kernel organizes regions of virtual memory as "areas" or segments according to how they are swapped
 - Data that gets swapped to the same file all goes to a segment
 - Multiple memory areas can get swapped to the same file in different places, or to anywhere in a "swap file" or "swap partition"
- How do you find a place to swap a page in the swap file?
 - Swap daemon maintains a "swap map" of
 - · Which blocks on disk are in use
 - · Which virtual pages are stored in those blocks

10/22/09

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Amaci-Dussea, Michael Swift

8

When is a page allocated space?

- When should a page be allocated/assigned space in swap?
 - When it is allocated?
 - ensures space available
 - Saves time on swapping
 - Total memory usage = swap
 - When it is evicted?
 - · May never need to do it
 - Can put it in a better place, so write pages sequentially
 - total memory usage = swap + ram

10/22/09

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift

9