
1

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
1

CS 537

Lecture 16

Secondary Storage

Michael Swift

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
2

Secondary storage

• Secondary storage typically:

– is anything that is outside of “primary memory”

– does not permit direct execution of instructions or data

retrieval via machine load/store instructions

• Characteristics:

– it’s large: 80GB-1TB

– it’s cheap: 0.30¢/GB

– it’s persistent: data survives power loss

– it’s slow: 100us-10 ms to access (compared to 100ns for

ram)

• why is this slow??

11/08/07 © 2005 Steve Gribble

Motivation:

I/O is Important

Applications have two essential components:
– Processing

– Input/Output (I/O)

• What applications have no input? no output?

I/O performance predicts application performance
– Amdahl’s Law: If continually improve only part of application (e.g.,

processing), then achieve diminishing returns in speedup

– f: portion of application that is improved (e.g., processing)

– speedupf: speedup of portion of application

– SpeedupApplication = 1/ ((1-f) + (f/speedupf))

• Example:

– f = 1/2, speedupf = 2, speedupapp = 1.33

– f = 1/3, speedupf = 2, speedupapp = 1.20

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
4

Disk trends

• Disk capacity, 1975-1989

– doubled every 3+ years

– 25% improvement each year

– factor of 10 every decade

– exponential, but far less rapid than processor performance

• Disk capacity since 1990

– doubling every 12 months

– 100% improvement each year

– factor of 1000 every decade

– 10x as fast as processor performance!

2

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
5

Disks and the OS

• Disks are messy, messy devices

– errors, bad blocks, missed seeks, etc.

• Job of OS is to hide this mess from higher-level

software

– low-level device drivers (initiate a disk read, etc.)

– higher-level abstractions (files, databases, etc.)

• OS may provide different levels of disk access to

different clients

– physical disk block (surface, cylinder, sector)

– disk logical block (disk block #)

– file logical (filename, block or record or byte #)

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
6

I/O System

user process

file system

I/O system

device driver

user process user process

OS

device controller

disk

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
7

Device Drivers:

When is I/O complete?
• Polling

– Handshake by setting and clearing flags

• Controller sets flag when done

• CPU repeatedly checks flag

– Disadvantage: Busy-waiting

• CPU wastes cycles when I/O device is slow

• Must be attentive to device, or could lose data

• Interrupts: Handle asynchronous events

– Controller asserts interrupt request line when done

– CPU jumps to appropriate interrupt service routine (ISR)

• Interrupt vector: Table of ISR addresses

• Index by interrupt number

– Low priority interrupts postponed until higher priority finished

– Combine with DMA: Do not interrupt CPU for every byte

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
8

Disk Terminology

spindle

platter

surface

track
cylinder

sector

read/write head

ZBR (Zoned bit recording): More sectors on outer tracks

3

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
9

Disk Performance

• How long to read or write n sectors?

– Positioning time + Transfer time (n)

– Positioning time: Seek time + Rotational Delay

– Transfer time: n / (RPM * bytes/track)

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
10

Disk performance

• Performance depends on a number of steps
– seek: moving the disk arm to the correct cylinder

• depends on how fast disk arm can move

– seek times aren’t diminishing very quickly (why?)

– rotation (latency): waiting for the sector to rotate under head

• depends on rotation rate of disk

– rates are increasing, but slowly (why?)

– transfer: transferring data from surface into disk controller,
and from there sending it back to host

• depends on density of bytes on disk

– increasing, and very quickly

• When the OS uses the disk, it tries to minimize the
cost of all of these steps
– particularly seeks and rotation

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
11

Disk Calculations
• Example disk:

– #surfaces: 4

– #tracks/surface: 64K

– #sectors/track: 1K (assumption??)

– #bytes/sector: 512

– RPM: 7200 = 120 tracks/sec

– Seek cost: 1.3ms - 16ms

• Questions

– How many disk heads? How many cylinders?

– How many sectors/cylinder? Capacity?

– What is the maximum transfer rate (bandwidth)?

– Average positioning time for random request?

– Time and bandwidth for random request of size:

• 4KB?

• 128 KB?

• 1 MB?

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
12

Interacting with disks

• In the old days…
– OS would have to specify cylinder #, sector #, surface #,

transfer size

• i.e., OS needs to know all of the disk parameters

• Modern disks are even more complicated
– not all sectors are the same size, sectors are remapped, …

– disk provides a higher-level interface, e.g., SCSI

• exports data as a logical array of blocks [0 … N]

• maps logical blocks to cylinder/surface/sector

• OS only needs to name logical block #, disk maps this to
cylinder/surface/sector

• on-board cache

• as a result, physical parameters are hidden from OS

– both good and bad

4

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
13

Disk Controller

• Responsible for interface between OS and disk drive

– Common interfaces: ATA/IDE vs. SCSI

• ATA/IDE used for personal storage: slow rotation, seek, high capacity

• SCSI for enterprise-class storage: faster rotation and seek

• QUESTION: which will be larger diameter? Which will have more
platters?

• Basic operations

– Read block

– Write block

• OS does not know of internal complexity of disk

– Disk exports array of Logical Block Numbers (LBNs)

– Disks map internal sectors to LBNs

• Implicit contract:

– Large sequential accesses to contiguous LBNs achieve much
better performance than small transfers or random accesses

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
14

Disk Abstraction

• How should disk map internal sectors to LBNs?

• Goal: Sequential accesses (or contiguous LBNs) should

achieve best performance

• Approaches:

– Traditional ordering

– Serpentine ordering

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
15

Reliability
• Disks fail more often....

– When continuously powered-on

– With heavy workloads

– Under high temperatures

• How do disks fail?

– Whole disk can stop working (e.g., motor dies)

– Transient problem (cable disconnected)

– Individual sectors can fail (e.g., head crash or scratch)

• Data can be corrupted or block not readable/writable

• Disks can internally fix some sector problems

– ECC (error correction code): Detect/correct bit flips

– Retry sector reads and writes: Try 20-30 different offset and timing
combinations for heads

– Remap sectors: Do not use bad sectors in future

• How does this impact performance contract??

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
16

Buffering
• Disks contain internal memory (2MB-16MB) used as cache

• Read-ahead: “Track buffer”

– Read contents of entire track into memory during rotational delay

• Write caching with volatile memory

– Immediate reporting: Claim written to disk when not

– Data could be lost on power failure

• Use only for user data, not file system meta-data

• Command queueing

– Have multiple outstanding requests to the disk

– Disk can reorder (schedule) requests for better performance

5

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
17

Role of OS for I/O
• Standard library

– Provide abstractions, consistent interface

– Simplify access to hardware devices

• Resource coordination

– Provide protection across users/processes

– Provide fair and efficient performance

• Requires understanding of underlying device characteristics

• User processes do not have direct access to devices

– Could crash entire system

– Could read/write data without appropriate permissions

– Could hog device unfairly

• OS exports higher-level functions

– File system: Provides file and directory abstractions

– File system operations: mkdir, create, read, write

11/08/07 © 2005 Steve Gribble 18

File systems

• The concept of a file system is simple

– the implementation of the abstraction for secondary storage

• abstraction = files

– logical organization of files into directories

• the directory hierarchy

– sharing of data between processes, people and machines

• access control, consistency, …

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
19

Abstraction: File

• User view

– Named collection of bytes

• Untyped or typed

• Examples: text, source, object, executables, application-specific

– Permanently and conveniently available

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
20

Files

• A file is a collection of data with some properties

– contents, size, owner, last read/write time, protection …

• Files may also have types

– understood by file system

• device, directory, symbolic link

– understood by other parts of OS or by runtime libraries

• executable, dll, source code, object code, text file, …

• Type can be encoded in the file’s name or contents

– file extension: .com, .exe, .bat, .dll, .jpg, .mov, .mp3, …

– content: #! for scripts

• Operating system view

– Map bytes as collection of blocks on physical non-volatile storage device

• Magnetic disks, tapes, NVRAM, battery-backed RAM

• Persistent across reboots and power failures

6

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
21

File Meta-Data

• Meta-data: Additional system information associated with each
file

– Name of file

– Type of file

– Pointer to data blocks on disk

– File size

– Times: Creation, access, modification

– Owner and group id

– Protection bits (read or write)

– Special file? (directory? symbolic link?)

• Meta-data is stored on disk

– Conceptually: meta-data can be stored as array on disk

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
22

File access methods

• Some file systems provide different access methods that specify
ways the application will access data

– sequential access

• read bytes one at a time, in order

– direct access

• random access given a block/byte #

– record access

• file is array of fixed- or variable-sized records

– indexed access

• FS contains an index to a particular field of each record in a file

• apps can find a file based on value in that record (similar to DB)

• Why do we care about distinguishing sequential from direct
access?

– what might the FS do differently in these cases?

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
23

File Operations
• Create file with given pathname /a/b/file

– Traverse pathname, allocate meta-data and directory entry

• Read from (or write to) offset in file

– Find (or allocate) blocks of file on disk; update meta-data

• Delete

– Remove directory entry, free disk space allocated to file

• Truncate file (set size to 0, keep other attributes)

– Free disk space allocated to file

• Rename file

– Change directory entry

• Copy file

– Allocate new directory entry, find space on disk and copy

• Change access permissions

– Change permissions in meta-data

11/08/07 © 2005 Steve Gribble

Opening Files

Expensive to access files with full pathnames
– On every read/write operation:

• Traverse directory structure

• Check access permissions

Open() file before first access
– User specifies mode: read and/or write

– Search directories for filename and check permissions

– Copy relevant meta-data to open file table in memory

– Return index in open file table to process (file descriptor)

– Process uses file descriptor to read/write to file

Per-process open file table
– Current position in file (offset for reads and writes)

– Open mode

Enables redirection from stdout to particular file

7

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
25

Directories

• Directories provide:

– a way for users to organize their files

– a convenient file name space for both users and FS’s

– a map from file name to blocks of file data on disk

• Actually, map file name to file meta-data (which enables one to find data on disk)

• Most file systems support multi-level directories

– naming hierarchies (/, /usr, /usr/local, /usr/local/bin, …)

• Most file systems support the notion of current directory

– absolute names: fully-qualified starting from root of FS
bash$ cd /usr/local

– relative names: specified with respect to current directory
bash$ cd /usr/local (absolute)

bash$ cd bin (relative, equivalent to cd /usr/local/bin)

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
26

Directory internals

• A directory is typically just a file that happens to

contain special metadata

– directory = list of (name of file, file attributes)

– attributes include such things as:

• size, protection, location on disk, creation time,

access time, …

– the directory list is usually unordered (effectively random)

• when you type “ls”, the “ls” command sorts the

results for you

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
27

Directories: Tree-Structured
• Directory listing contains <name, index>, but name can be directory

– Directory is stored and treated like a file

– Special bit set in meta-data for directories

• User programs can read directories

• Only system programs can write directories

– Specify full pathname by separating directories and files with special
characters (e.g., \ or /)

• Special directories
– Root: Fixed index for meta-data (e.g., 2)

– This directory: .

– Parent directory: ..

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
28

Path name translation

• Let’s say you want to open “/one/two/three”
fd = open(“/one/two/three”, O_RDWR);

• What goes on inside the file system?
– open directory “/” (well known, can always find)

– search the directory for “one”, get location of “one”

– open directory “one”, search for “two”, get location of “two”

– open directory “two”, search for “three”, get loc. of “three”

– open file “three”

– (of course, permissions are checked at each step)

• FS spends lots of time walking down directory paths
– this is why open is separate from read/write (session state)

– OS will cache prefix lookups to enhance performance

• /a/b, /a/bb, /a/bbb all share the “/a” prefix

8

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
29

Acyclic-Graph Directories

• More general than tree structure
– Add connections across the tree (no cycles)

– Create links from one file (or directory) to another

• Hard link: “ln a b” (“a” must exist already)
– Idea: Can use name “a” or “b” to get to same file data

– Implementation: Multiple directory entries point to same meta-data

– What happens when you remove a? Does b still exist?

• How is this feature implemented???
– Unix: Does not create hard links to directories. Why?

11/29/2009 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
30

Acyclic-Graph Directories

• Symbolic (soft) link: “ln -s a b”

– Can use name “a” or “b” to get to same file data, if “a” exists

– When reference “b”, lookup soft link pathname

– b: Special file (designated by bit in meta-data)

• Contents of b contain name of “a”

• Optimization: In directory entry for “b”, put soft

link filename “a”

