
1

© 2004-2009 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

CS 537
Section 1

Programming in Unix and C

Michael Swift

Project 0
•  Word count histogram

–  You will write a program that reads a text file and reports the
total count of words of each length

–  Program input: read a file specified on the command line:
word-count filename.txt

–  The output should be as follows:
length 3: 2 words

length 44: 44 words

•  Debugging
–  Start your program under the debugger.
–  Single step through input of a single line.
–  Print out the values of at least two different variables.

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Facilities
•  Department Linux machines (penguins):

–  1350: mumble-##
–  1351: king##
–  1370: adelie##, humboldt##, macaroni##

•  Unix Orientation classes
–  Today, Wednesday at 4 pm in CS 1325

•  CS1000
–  http://www.cs.wisc.edu/csl/cs1000/

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Why C
•  All modern operating systems are written in C
•  Why?

–  Control
–  Predictable code
–  Expressive
–  Optimizable
–  Powerful pre-processor

2

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Issues with C
•  Little hand-holding for programmer

–  Manual memory management
–  Small standard library
–  No native support for threads and concurrency
–  Weak type checking

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Using C and Unix

program.c

program.h

stdio.h

libc.a

Compiler

Linker

Make
Makefile

program

gcc -c program.c

program.o

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

C language
#include <stdio.h>
int main(int argc, char * argv[])
{
 printf(“Hello, world\n”);
 return(0);
}

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Issues with C
•  Memory allocation

–  malloc(), free()

•  Pointer arithmetic and arrays
•  Preprocessor

3

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Example Memory
•  You have to mange memory yourself.
•  Stack allocated memory: becomes invalid when you return from

function. This will not work:
char * f() {
 char str[100];
 strpy(str,”hello, world\n”);
 return(str);
}

•  Memory from malloc only becomes invalid when you free it:
char * f() {
 char *str;
 str = malloc(100);
 strpy(str,”hello, world\n”);
 return(str);
}

•  is o.k., but someone has to call free(str);

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Strings
•  Strings in C are arrays of bytes:

–  char str[100];

•  Or pointers to memory
–  char * str;
–  str = malloc(100);

•  They are null terminated – so you need to make
space for it
–  str[0] = ‘\0’;
–  strlen(str) = 0;

•  There are a bunch of functions for working with them:
–  strlen, strcpy, strcat

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

File I/O
•  f* functions for accessing files:

–  struct FILE *: represents an open file
–  f = fopen(“foo”,”r”) – open file foo for reading
–  fclose(f) - says you are done with f
–  bytes = fread(buffer,size,,count,f) = reads size x count bytes

from f into buffer
–  fwrite(buffer, size, count ,f) = writes size x count bytes to f

from buffer
–  fgets(str, size, f) = reads up to size-1 bytes from a single line

of f into str, including newline

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

4

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

More advanced topics
•  Compiler errors and warnings

–  gcc -Wall foo.c

•  Optimization for faster and smaller code
–  gcc -O foo.c
–  gcc -O2 foo.c

•  Separate compilation
–  gcc -c foo.c
–  gcc -c bar.c
–  gcc -o foobar foo.o bar.o

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Documentation
•  Unix/Linux man pages

–  example: “man close”
CLOSE(3) BSD Library Functions Manual FCLOSE(3)

NAME
 fclose -- close a stream

LIBRARY
 Standard C Library (libc, -lc)

SYNOPSIS
 #include <stdio.h>

 int
 fclose(FILE *stream);

DESCRIPTION
 The fclose() function dissociates the named stream from its underlying
 …

RETURN VALUES
 Upon successful completion 0 is returned. Otherwise, EOF is returned and
 …

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Man pages
•  Documentation is divided into sections

1.  Programs, commands
2.  System calls
3.  Subroutine libraries
4.  Hardware
5.  Config files
6.  Games
7.  Miscellaneous
8.  System administration

•  man returns the result from the lowest-numbered
section

•  apropos searches for commands with a word
© 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift

Debugging
•  Compile with debugging using “-g”

•  gcc -g -o foo.o foo.c

•  Run your program with gdb

gdb foobar
GNU gdb 6.3
<copyright omitted>
(gdb) break main
breakpoint 1 at 0x80483b0: in file foo.c, line 5
(gdb) run
Starting program: /afs/cs.wisc.edu/…/foobar
Breakpoint 1, main (argc=1, argv=0xbfe27804) at foo.c:5
5  if (argc > 1) {
(gdb) print argc
$1 = 1
(gdb)

5

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Makefiles
•  Specify the commands to compile code

–  in a file named “Makefile”
•  Example:

•  General format:

foo.o: foo.c
 gcc -c -O -Wall foo.c

bar.o: bar.c
 gcc -c -O -Wall bar.c

foobar: foo.o bar.o
 gcc -o foobar foo.o bar.o

default: foobar

target: prereq1 prereq2
<tab> command1
<tab> command2

