
1/27/09

1

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

1

CS 537
Lecture 3: Processes

Michael Swift

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

2

Process Management

•  This lecture begins a series of topics on processes,
threads, and synchronization

•  Today: processes and process management
–  what are the OS units of execution?
–  how are they represented inside the OS?
–  how is the CPU scheduled across processes?
–  what are the possible execution states of a process?

•  and how does the system move between them?

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

3

Example OS in operation

Hardware (CPU, devices)

Application Interface (API)

Hardware Abstraction Layer

File
Systems

Memory
Manager

Process
Manager

Network
Support

Device
Drivers

Interrupt
Handlers

Boot &
Init

Acrobat Photoshop Firefox

O
pe

ra
tin

g
Sy

st
em

 Portable

U
se

r A
pp

s

Acrobat

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

4

Why Processes? Simplicity + Speed

•  Hundreds of things going on in the system

•  How to make things simple?
–  Separate each in an isolated process
–  Decomposition

•  How to speed-up?
–  Overlap I/O bursts of one process with CPU bursts of another

gcc emacs nfsd
lpr ls www

emacs nfsd
lpr ls

www
OS

OS

1/27/09

2

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

5

The Process

•  The process is the OS’s abstraction for execution
–  the unit of execution
–  the unit of scheduling
–  the dynamic (active) execution context

•  compared with program: static, just a bunch of bytes

•  Process is often called a job, task, or sequential
process
–  a sequential process is a program in execution

•  defines the instruction-at-a-time execution of a program

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

6

What is a program?
A program consists of:

–  Code: machine instructions
–  Data: variables stored and manipulated in memory

•  initialized variables (globals)
•  dynamically allocated variables (malloc, new)
•  stack variables (C automatic variables, function arguments)

–  DLLs: libraries that were not compiled or linked with the program
•  containing code & data, possibly shared with other programs

–  mapped files: memory segments containing variables (mmap())
•  used frequently in database programs

•  Whats the relationship between a program and process?
–  A process is a executing program

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

7

Preparing a Program

source
file

compiler/
assembler

.o files

Linker

Executable file
(must follow standard format,

such as ELF on Linux,
Microsoft PE on Windows)

Header

Code

Initialized data

BSS

Symbol table

Line numbers

Ext. refs

static libraries
(libc, streams…)

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

8

Running a program
•  OS creates a “process” and allocates memory for it
•  The loader:

–  reads and interprets the executable file
–  sets process’s memory to contain code & data from executable
–  pushes “argc”, “argv”, “envp” on the stack
–  sets the CPU registers properly & calls “__start()” [Part of CRT0]

•  Program start running at __start(), which calls main()
–  we say “process” is running, and no longer think of “program”

•  When main() returns, CRT0 calls “exit()”
–  destroys the process and returns all resources

1/27/09

3

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

9

What’s in a Process?
•  A process consists of (at least):

–  an address space
–  the code for the running program
–  the data for the running program
–  an execution stack and stack pointer (SP)

•  traces state of procedure calls made
–  the program counter (PC), indicating the next instruction
–  a set of general-purpose processor registers and their values
–  a set of OS resources

•  open files, network connections, sound channels, …

•  The process is a container for all of this state
–  a process is named by a process ID (PID)

•  just an integer

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

10

Process != Program

Header

Code

Initialized data

BSS

Symbol table

Line numbers

Ext. refs

Code

Initialized data

BSS

Heap

Stack

DLL’s

mapped segments

Executable

Process
address space

Program is passive
•  Code + data

Process is running program
•  stack, regs, program counter

Example:
We both run IE:
-  Same program
-  Separate processes

PC

SP

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

11

Process states
•  Each process has an execution state, which indicates

what it is currently doing
–  ready: waiting to be assigned to CPU

•  could run, but another process has the CPU
–  running: executing on the CPU

•  is the process that currently controls the CPU
•  pop quiz: how many processes can be running simultaneously?

–  waiting: waiting for an event, e.g. I/O
•  cannot make progress until event happens

•  As a process executes, it moves from state to state
–  UNIX: run ps, STAT column shows current state
–  which state is a process is most of the time?

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

12

Process state transitions

•  What can cause schedule/unschedule transitions?

New

Terminated

Ready

Running

Waiting

create

kill
I/O,

 page fault, etc.

I/O
done

schedule
unschedule

1/27/09

4

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

13

Process data structures

•  How does the OS represent a process in the kernel?
–  at any time, there are many processes, each in its own

particular state
–  the OS data structure that represents each is called the

process control block (PCB)

•  PCB contains all info about the process
–  OS keeps all of a process’ hardware execution state in the

PCB when the process isn’t running
•  PC
•  SP
•  registers

–  when process is unscheduled, the state is transferred out of
the hardware into the PCB

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

14

PCB

•  The PCB is a data structure with many, many fields:
–  process ID (PID)
–  execution state
–  program counter, stack pointer, registers
–  memory management info
–  UNIX username of owner
–  scheduling priority
–  accounting info
–  pointers into state queues

•  In linux:
–  defined in task_struct (include/linux/sched.h)
–  over 95 fields!!!

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

15

process state

process number

program counter

stack pointer

registers (general, FP)

memory management info

username of owner

queue pointers for state queues

scheduling info (priority, etc.)

accounting info

Simple Process Control Block

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

16

PCBs and Hardware State
•  When a process is running, its hardware state is

inside the CPU
–  PC, SP, registers
–  CPU contains current values

•  When the OS stops running a process (puts it in the
waiting state), it saves the registers’ values in the
PCB
–  when the OS puts the process in the running state, it loads

the hardware registers from the values in that process’ PCB
•  The act of switching the CPU from one process to

another is called a context switch
–  timesharing systems may do 100s or 1000s of switches/s
–  takes about 5 microseconds on today’s hardware

1/27/09

5

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

17

Context Switch

•  For a running process
–  All registers are loaded in CPU and modified

•  E.g. Program Counter, Stack Pointer, General Purpose
Registers

•  When process relinquishes the CPU, the OS
–  Saves register values to the PCB of that process

•  To execute another process, the OS
–  Loads register values from PCB of that process

⇒ Context Switch
-  Process of switching CPU from one process to another
-  Very machine dependent for types of registers

CPU Switch From Process to Process

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

19

Details of Context Switching

•  Very tricky to implement
–  OS must save state without changing state
–  Should run without touching any registers

•  CISC: single instruction saves all state
•  RISC: reserve registers for kernel

–  Or way to save a register and then continue

•  Overheads: CPU is idle during a context switch
–  Explicit:

•  direct cost of loading/storing registers to/from main memory
–  Implicit:

•  Opportunity cost of flushing useful caches (cache, TLB, etc.)
•  Wait for pipeline to drain in pipelined processors

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

20

State queues

•  The OS maintains a collection of queues that
represent the state of all processes in the system
–  typically one queue for each state

•  e.g., ready, waiting, …
–  each PCB is queued onto a state queue according to its

current state
–  as a process changes state, its PCB is unlinked from from

queue, and linked onto another

1/27/09

6

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

21

State queues

•  There may be many wait queues, one for each type
of wait (particular device, timer, message, …)

head ptr
tail ptr

netscape pcb emacs pcb ls pcb

cat pcb netscape pcb head ptr
tail ptr

Wait queue header

Ready queue header

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

22

PCBs and State Queues

•  PCBs are data structures
–  dynamically allocated inside OS memory

•  When a process is created:
–  OS allocates a PCB for it
–  OS initializes PCB
–  OS puts PCB on the correct queue

•  As a process computes:
–  OS moves its PCB from queue to queue

•  When a process is terminated:
–  OS deallocates its PCB

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

23

How to create a process?

•  Double click on a icon?
•  After boot OS starts the first process

–  E.g. sched for Solaris, ntoskrnel.exe for XP
•  The first process creates other processes:

–  the creator is called the parent process
–  the created is called the child process
–  the parent/child relationships is expressed by a process tree

•  For example, in UNIX the second process is called init
–  it creates all the gettys (login processes) and daemons
–  it should never die
–  it controls the system configuration (#processes, priorities…)

•  Explorer.exe in Windows for graphical interface

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

24

Process creation

•  One process can create another process
–  creator is called the parent
–  created process is called the child
–  UNIX: do ps, look for PPID field
–  what creates the first process, and when?

•  In some systems, parent defines or donates
resources and privileges for its children
–  UNIX: child inherits parents userID field, etc.

•  when child is created, parent may either wait for it to
finish, or it may continue in parallel, or both!

1/27/09

7

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

25

UNIX process creation
•  UNIX process creation through fork() system call

–  creates and initializes a new PCB
–  creates a new address space
–  initializes new address space with a copy of the entire

contents of the address space of the parent
–  initializes kernel resources of new process with resources of

parent (e.g. open files)
–  places new PCB on the ready queue

•  the fork() system call returns twice
–  once into the parent, and once into the child
–  returns the child’s PID to the parent
–  returns 0 to the child

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

26

fork()
int main(int argc, char **argv)

{
 char *name = argv[0];
 int child_pid = fork();
 if (child_pid == 0) {
 printf(“Child of %s is %d\n”,
 name, child_pid);
 return 0;
 } else {
 printf(“My child is %d\n”, child_pid);
 return 0;
 }
}

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

27

output

spinlock% gcc -o testparent testparent.c

spinlock% ./testparent
My child is 486

Child of testparent is 0
spinlock% ./testparent

Child of testparent is 0

My child is 486

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

28

Fork and exec
•  So how do we start a new program, instead of just

forking the old program?
–  the exec() system call!
–  int exec(char *prog, char ** argv)

•  exec()
–  stops the current process
–  loads program ‘prog’ into the address space
–  initializes hardware context, args for new program
–  places PCB onto ready queue
–  note: does not create a new process!

•  what does it mean for exec to return?
–  what happens if you “exec csh” in your shell?
–  what happens if you “exec ls” in your shell?

1/27/09

8

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

29

UNIX shells
int main(int argc, char **argv)
{
 while (1) {
 char *cmd = get_next_command();
 int child_pid = fork();
 if (child_pid == 0) {
 manipulate STDIN/STDOUT/STDERR fd’s
 exec(cmd);
 panic(“exec failed!”);
 } else {
 wait(child_pid);
 }
 }
}

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

30

•  Open the program file to be executed
•  Create the Windows executive process object
•  Create the initial thread (stack, context, ...)
•  Notify Win32 subsystem about new process
•  Start execution of the initial thread
•  Complete initialization (eg, load dlls)
•  Continue execution in both processes

Copied fromInside Windows 2000

Windows CreateProcess function

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

31

Which is better?

int child_pid = fork();	
if (child_pid == 0) {	
 exec(“myprog”);	
}	

STARTUPINFO si = {0}; 	
PROCESS_INFORMATION pi = {0}; 	
si.cb = sizeof(si); 		
if(!CreateProcess(

	 	NULL, 	
 "c:\\myprog.exe 1 2", 

 NULL, 	
 NULL, 	
 FALSE, 	
 0, NULL, 	
 NULL, 	
 &si, 	
 &pi)) 	
{	
 printf("CreateProcess failed 

 (%d).\n", GetLastError());	
 return;	
}	

Unix Windows

Which is better?

• More flexible?

• Easier?

• Faster?

1/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

32

Process Termination
•  Process executes last statement and OS decides(exit)

–  Output data from child to parent (via wait)
–  Process’ resources are deallocated by operating system

•  Parent may terminate execution of child process (abort)
–  Child has exceeded allocated resources
–  Task assigned to child is no longer required
–  If parent is exiting

•  Some OSes don’t allow child to continue if parent terminates
–  All children terminated - cascading termination

