
1

1/29/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

1

CS 537
Lecture 4

Inter-Process Communication
Michael Swift

Notes

•  Homework 1 due today in class, on paper
•  Quiz 1 will be next Tuesday at the beginning of

section
•  probably 3 questions
•  Covers up until today’s lecture

–  hardware support for OS
–  system calls
–  processes
–  one question will be from book

•  Book material in first two reading assignments

1/29/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

2

Project Questions

•  How was project 0?
•  What was easy?
•  What was hard?
•  What can I teach you about?

1/29/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

3 1/29/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

4

Questions for this Lecture

•  How can multiple processes cooperate?

2

1/29/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

5

Interprocess Communication (IPC)

•  To cooperate usefully, threads must communicate
with each other

•  How do processes and threads communicate?
–  Shared Memory
–  Message Passing
–  Signals

Interprocess Communication
•  Processes within a system may be independent or

cooperating
–  Cooperating process can affect or be affected by other

processes, including sharing data

•  Reasons for cooperating processes:
–  Information sharing
–  Computation speedup
–  Modularity
–  Convenience

•  Cooperating processes need interprocess
communication (IPC)

•  Two models of IPC
–  Shared memory
–  Message passing

Cooperating Processes

•  Independent process cannot affect or be affected by
the execution of another process

•  Cooperating process can affect or be affected by the
execution of another process

•  Advantages of process cooperation
–  Information sharing
–  Computation speed-up
–  Modularity
–  Convenience

Communications Models

3

1/29/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

9

IPC: Shared Memory
•  Processes

–  Each process has private address space
–  Explicitly set up shared memory segment within each address

space
•  Threads

–  Always share address space (use heap for shared data)
•  Advantages

–  Fast and easy to share data
•  Disadvantages

–  Must synchronize data accesses; error prone
•  Synchronization: Topic for end of semester

1/29/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

10

IPC: Signals
•  Signal

–  Software interrupt that notifies a process of an event
–  Examples: SIGFPE, SIGKILL, SIGUSR1, SIGSTOP, SIGCONT

•  What happens when a signal is received?
–  Catch: Specify signal handler to be called
–  Ignore: Rely on OS default action

•  Example: Abort, memory dump, suspend or resume process
–  Mask: Block signal so it is not delivered

•  May be temporary (while handling signal of same type)

•  Disadvantage
–  Does not specify any data to be exchanged
–  Complex semantics with threads
–  Not implemented in Windows

1/29/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

11

IPC: Message Passing
•  Message passing most commonly used between processes

–  Explicitly pass data btween sender (src) + receiver (destination)
–  Example: Unix pipes, Windows LPC

•  Advantages:
–  Makes sharing explicit
–  Improves modularity (narrow interface)
–  Does not require trust between sender and receiver

•  Disadvantages:
–  Performance overhead to copy messages

•  Issues:
–  How to name source and destination?

•  One process, set of processes, or mailbox (port)
–  Does sending process wait (I.e., block) for receiver?

•  Blocking: Slows down sender
•  Non-blocking: Requires buffering between sender and receiver

IPC: Message Passing details

•  Mechanism for processes to communicate and to
synchronize their actions

•  Message system – processes communicate with
each other without resorting to shared variables

•  If P and Q wish to communicate, they need to:
–  establish a communication link between them
–  exchange messages via send/receive

•  Implementation of communication link
–  physical (e.g., shared memory, hardware bus)
–  logical (e.g., logical properties)

4

Producer-Consumer Problem
•  Paradigm for cooperating processes,
producer process produces information that
is consumed by a consumer process
–  unbounded-buffer places no practical limit on the

size of the buffer
–  bounded-buffer assumes that there is a fixed buffer

size

Bounded-Buffer – Shared-Memory Solution

•  Shared data
#define BUFFER_SIZE 10
typedef struct {

 . . .
} item;

item buffer[BUFFER_SIZE];
int in = 0;
int out = 0;

•  Solution is correct, but can only use
BUFFER_SIZE-1 elements

Bounded-Buffer – Producer

	while (true) { 
 /* Produce an item */	

 while (((in = (in + 1) % BUFFER SIZE count)	
 == out)	
	 ; /* do nothing -- no free buffers */	
	 buffer[in] = item;	
	 in = (in + 1) % BUFFER SIZE;	

 }	

Bounded Buffer – Consumer

	while (true) {	
 while (in == out)	
 ; // do nothing -- nothing to consume	
	 // remove an item from the buffer	
	 item = buffer[out];	
	 out = (out + 1) % BUFFER SIZE;	
	 return item;	

 }	

5

Synchronization

•  Message passing may be either blocking or non-
blocking

•  Blocking is considered synchronous
–  Blocking send has the sender block until the message is

received
–  Blocking receive has the receiver block until a message

is available

•  Non-blocking is considered asynchronous
–  Non-blocking send has the sender send the message

and continue
–  Non-blocking receive has the receiver receive a valid

message or null

Buffering

•  Queue of messages attached to the link;
implemented in one of three ways
1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)
2. Bounded capacity – finite length of n messages

Sender must wait if link full
3. Unbounded capacity – infinite length

Sender never waits

