
1

3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

1

CS 537
Lecture 11

Secondary Storage

Michael Swift

3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

2

Secondary storage

•  Secondary storage typically:
–  is anything that is outside of “primary memory”
–  does not permit direct execution of instructions or data

retrieval via machine load/store instructions

•  Characteristics:
–  it’s large: 80GB-1TB
–  it’s cheap: 0.30¢/GB
–  it’s persistent: data survives power loss
–  it’s slow: 100us-10 ms to access (compared to 100ns for

ram)
•  why is this slow??

3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

3

Another trip down memory lane …

IBM 2314
About the size of

 6 refrigerators
8 x 29MB (M!)

3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

4

Disk trends

•  Disk capacity, 1975-1989
–  doubled every 3+ years
–  25% improvement each year
–  factor of 10 every decade
–  exponential, but far less rapid than processor performance

•  Disk capacity since 1990
–  doubling every 12 months
–  100% improvement each year
–  factor of 1000 every decade
–  10x as fast as processor performance!

2

Rotating Disks vs. Solid-State Disks (AKA
Flash)

•  Forget everything you knew about
rotating disks. SSDs are different

•  SSDs are complex software systems
•  More later 3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
6

Disks and the OS

•  Disks are messy, messy devices
–  errors, bad blocks, missed seeks, etc.

•  Job of OS is to hide this mess from higher-level
software
–  low-level device drivers (initiate a disk read, etc.)
–  higher-level abstractions (files, databases, etc.)

•  OS may provide different levels of disk access to
different clients
–  physical disk block (surface, cylinder, sector)
–  disk logical block (disk block #)
–  file logical (filename, block or record or byte #)

3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

7

I/O System

user process!

file system!

I/O system!

device driver!

user process! user process!

OS!

device controller!

disk!
3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
8

Device Drivers
•  Mechanism: Encapsulate details of device

–  File system not aware of device details
–  Much of OS code is in device drivers

•  Responsible for many of the errors as well!
•  Device driver interacts with device controller

–  Read status registers, read data
–  Write control registers, provide data for write operations

•  How does device driver access controller?
–  Special instructions

•  Valid only in kernel mode, No longer popular
–  Memory-mapped

•  Read and write to special memory addresses
•  Protect by placing in kernel address space only

–  May map part of device in user address space for fast access

3

3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

9

Device Drivers:
Starting I/O

•  Programmed I/O (PIO)
–  Must initiate and watch every byte
–  Disadvantage: Large overhead for large transfers

•  Direct Memory Access (DMA)
–  Offload work from CPU to to special-purpose processor responsible

for large transfers
–  CPU: Write DMA command block into main memory

•  Pointer to source and destination address
•  Size of transfer

–  CPU: Inform DMA controller of address of command block
–  DMA controller: Handles transfer with I/O device controller
–  Can use physical or virtual addresses (DVMA)

•  Disadvantages of each approach??

3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

10

Device Drivers:
When is I/O complete?

•  Polling
–  Handshake by setting and clearing flags

•  Controller sets flag when done
•  CPU repeatedly checks flag

–  Disadvantage: Busy-waiting
•  CPU wastes cycles when I/O device is slow
•  Must be attentive to device, or could lose data

•  Interrupts: Handle asynchronous events
–  Controller asserts interrupt request line when done
–  CPU jumps to appropriate interrupt service routine (ISR)

•  Interrupt vector: Table of ISR addresses
•  Index by interrupt number

–  Low priority interrupts postponed until higher priority finished
–  Combine with DMA: Do not interrupt CPU for every byte

3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

11

Disk Terminology
spindle!

platter!

surface!

track!cylinder!

sector!

read/write head!

ZBR (Zoned bit recording): More sectors on outer tracks!
3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
12

Example disk characteristics

•  IBM Ultrastar 36XP drive
–  form factor: 3.5”
–  capacity: 36.4 GB
–  rotation rate: 7,200 RPM (120 RPS)
–  platters: 10
–  surfaces: 20
–  sector size: 512-732 bytes
–  cylinders: 11,494
–  cache: 4MB
–  transfer rate: 17.9 MB/s (inner) – 28.9 MB/s (outer)
–  full seek: 14.5 ms
–  head switch: 0.3 ms

4

3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

13

Disk Performance
•  How long to read or write n sectors?

–  Positioning time + Transfer time (n)
–  Positioning time: Seek time + Rotational Delay
–  Transfer time: n / (RPM * bytes/track)

3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

14

Disk performance
•  Performance depends on a number of steps

–  seek: moving the disk arm to the correct cylinder
•  depends on how fast disk arm can move

–  seek times aren’t diminishing very quickly (why?)
–  rotation (latency): waiting for the sector to rotate under head

•  depends on rotation rate of disk
–  rates are increasing, but slowly (why?)

–  transfer: transferring data from surface into disk controller,
and from there sending it back to host

•  depends on density of bytes on disk
–  increasing, and very quickly

•  When the OS uses the disk, it tries to minimize the
cost of all of these steps
–  particularly seeks and rotation

3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

15

Disk Calculations
•  Example disk:

–  #surfaces: 4
–  #tracks/surface: 64K
–  #sectors/track: 1K (assumption??)
–  #bytes/sector: 512
–  RPM: 7200 = 120 tracks/sec
–  Seek cost: 1.3ms - 16ms

•  Questions
–  How many disk heads? How many cylinders?
–  How many sectors/cylinder? Capacity?
–  What is the maximum transfer rate (bandwidth)?
–  Average positioning time for random request?
–  Time and bandwidth for random request of size:

•  4KB?
•  128 KB?
•  1 MB?

3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

16

Interacting with disks
•  In the old days…

–  OS would have to specify cylinder #, sector #, surface #,
transfer size

•  i.e., OS needs to know all of the disk parameters

•  Modern disks are even more complicated
–  not all sectors are the same size, sectors are remapped, …
–  disk provides a higher-level interface, e.g., SCSI

•  exports data as a logical array of blocks [0 … N]
•  maps logical blocks to cylinder/surface/sector
•  OS only needs to name logical block #, disk maps this to

cylinder/surface/sector
•  on-board cache
•  as a result, physical parameters are hidden from OS

–  both good and bad

5

3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

17

Disk Controller
•  Responsible for interface between OS and disk drive

–  Common interfaces: ATA/IDE vs. SCSI
•  ATA/IDE used for personal storage: slow rotation, seek, high capacity
•  SCSI for enterprise-class storage: faster rotation and seek
•  QUESTION: which will be larger diameter? Which will have more

platters?
•  Basic operations

–  Read block
–  Write block

•  OS does not know of internal complexity of disk
–  Disk exports array of Logical Block Numbers (LBNs)
–  Disks map internal sectors to LBNs

•  Implicit contract:
–  Large sequential accesses to contiguous LBNs achieve much

better performance than small transfers or random accesses

3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

18

Disk Abstraction
•  How should disk map internal sectors to LBNs?
•  Goal: Sequential accesses (or contiguous LBNs) should

achieve best performance
•  Approaches:

–  Traditional ordering

–  Serpentine ordering

3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

19

Reliability
•  Disks fail more often....

–  When continuously powered-on
–  With heavy workloads
–  Under high temperatures

•  How do disks fail?
–  Whole disk can stop working (e.g., motor dies)
–  Transient problem (cable disconnected)
–  Individual sectors can fail (e.g., head crash or scratch)

•  Data can be corrupted or block not readable/writable
•  Disks can internally fix some sector problems

–  ECC (error correction code): Detect/correct bit flips
–  Retry sector reads and writes: Try 20-30 different offset and timing

combinations for heads
–  Remap sectors: Do not use bad sectors in future

•  How does this impact performance contract??

3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

20

Buffering
•  Disks contain internal memory (2MB-16MB) used as cache
•  Read-ahead: “Track buffer”

–  Read contents of entire track into memory during rotational delay
•  Write caching with volatile memory

–  Immediate reporting: Claim written to disk when not
–  Data could be lost on power failure

•  Use only for user data, not file system meta-data

•  Command queueing
–  Have multiple outstanding requests to the disk
–  Disk can reorder (schedule) requests for better performance

6

3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

21

Disk Scheduling
•  Goal: Minimize positioning time

–  Performed by both OS and disk itself; Why?
•  FCFS: Schedule requests in order received

–  Advantage: Fair
–  Disadvantage: High seek cost and rotation

•  Shortest seek time first (SSTF):
–  Handle nearest cylinder next
–  Advantage: Reduces arm movement (seek time)
–  Disadvantage: Unfair, can starve some requests

3/3/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

22

Disk Scheduling
•  SCAN (elevator): Move from outer cylinder in, then back out

again
–  Advantage: More fair to requests, similar performance as SSTF
–  Variation: Circular-Scan (C-Scan)

•  Move head only from outer cylinder inward (then start over)
•  Why??? (Two reasons)

•  LOOK: SCAN, except stop at last request

•  Calculate seek distance for workload with cylinder #s: 10, 2, 0,
85, 50, 40, 1, 37, 41; Start at #43, moving up

Flash disks: solid state storage

•  A flash block is a grid of cells
–  Single Level Cell (SLC) = 1 bit per cell (faster, more reliable)
–  Multi Level Cell (MLC) = 2 bits per cell (slower, less reliable)

Background

7

Write-in-Place vs. Logging
•  Rotating disks

–  Constant map from
LBA to on-disk location

•  SSDs
–  Writes always to new locations
–  Superseded blocks cleaned later

Striping

•  LBAs striped across flash packages
–  Single request can span multiple chips
–  Natural load balancing

•  What’s the right stripe size?

Controller

0 8
16 24
32 40

1 9
17 25
33 41

 2 10
18 26
34 42

 3 11
19 27
35 43

 4 12
20 28
36 44

 5 13
21 29
37 45

 6 14
22 30
38 46

 7 15
23 31
39 47

Failure Modes

•  Media imperfections, loose particles, vibration
•  Latent sector errors [Bairavasundaram 07]

–  E.g., with uncorrectable ECC
–  Frequency of affected disks increases linearly with time
–  Most affected disks (80%) have < 50 errors
–  Temporal and spatial locality
–  Correlation with recovered errors

•  Disk scrubbing helps

Failure Modes

•  Types of NAND flash errors
(mostly when erases > wear limit)
–  Write errors: Probability varies with # of erasures
–  Read disturb: Increases with # of reads
–  Data retention errors: Charge leaks over time
–  Little spatial or temporal locality

(within equally worn blocks)
•  Better ECC can help
•  Errors increase with wear: Need wear-leveling

