
1

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

1

CS 537
Lecture 13

File Systems Internals

Michael Swift

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

2

Workloads
•  Motivation: Workloads influence design of file system
•  File characteristics (measurements of UNIX and NT)

–  Most files are small (about 8KB)
–  Most of the disk is allocated to large files

•  (90% of data is in 10% of files)
•  Access patterns

–  Sequential: Data in file is read/written in order
•  Most common access pattern

–  Random (direct): Access block without referencing predecessors
•  Difficult to optimize

–  Access files in same directory together
•  Spatial locality

–  Access meta-data when access file
•  Need meta-data to find data

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

3

Goals
•  OS allocates LBNs (logical block numbers) to meta-data, file

data, and directory data
–  Workload items accessed together should be close in LBN space

•  Implications
–  Large files should be allocated sequentially
–  Files in same directory should be allocated near each other
–  Data should be allocated near its meta-data

•  Meta-Data: Where is it stored on disk?
–  Embedded within each directory entry
–  In data structure separate from directory entry

•  Directory entry points to meta-data

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

4

Allocation Strategies
•  Progression of different approaches

–  Contiguous
–  Extent-based
–  Linked
–  File-allocation Tables
–  Indexed
–  Multi-level Indexed

•  Questions
–  Amount of fragmentation (internal and external)?
–  Ability to grow file over time?
–  Seek cost for sequential accesses?
–  Speed to find data blocks for random accesses?
–  Wasted space for pointers to data blocks?

2

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

5

Contiguous Allocation
•  Allocate each file to contiguous blocks on disk

–  Meta-data: Starting block and size of file
–  OS allocates by finding sufficient free space

•  Must predict future size of file; Should space be reserved?
–  Example: IBM OS/360

•  Advantages
–  Little overhead for meta-data
–  Excellent performance for sequential accesses
–  Simple to calculate random addresses

•  Drawbacks
–  Horrible external fragmentation (Requires periodic compaction)
–  May not be able to grow file without moving it

Contiguous Allocation of Disk Space

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

7

Extent-Based Allocation
•  Allocate multiple contiguous regions (extents) per file

–  Meta-data: Small array (2-6) designating each extent
•  Each entry: starting block and size

•  Improves contiguous allocation
–  File can grow over time (until run out of extents)
–  Helps with external fragmentation

•  Advantages
–  Limited overhead for meta-data
–  Very good performance for sequential accesses
–  Simple to calculate random addresses

•  Disadvantages (Small number of extents):
–  External fragmentation can still be a problem
–  Not able to grow file when run out of extents

D! A! A! A! B! B! B! B! C! C! C! B! B!D! D!

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

8

Linked Allocation
•  Allocate linked-list of fixed-sized blocks

–  Meta-data: Location of first block of file
•  Each block also contains pointer to next block

–  Examples: TOPS-10, Alto

•  Advantages
–  No external fragmentation
–  Files can be easily grown, with no limit

•  Disadvantages
–  Cannot calculate random addresses w/o reading previous blocks
–  Sequential bandwidth may not be good

•  Try to allocate blocks of file contiguously for best performance
–  Sensitivity to corruption

•  Trade-off: Block size (does not need to equal sector size)
–  Larger --> ??
–  Smaller --> ??

D! A! A! A! B! B! B! B! C! C! C! B! B!D! D! D! D!B!

3

Linked Allocation

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

10

File-Allocation Table (FAT)
•  Variation of Linked allocation

–  Keep linked-list information for all files in on-disk FAT table
–  Meta-data: Location of first block of file

•  And, FAT table itself

•  Comparison to Linked Allocation
–  Same basic advantages and disadvantages
–  Disadvantage: Read from two disk locations for every data read
–  Optimization: Cache FAT in main memory

•  Advantage: Greatly improves random accesses

File-Allocation Table

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

12

Indexed Allocation

•  Allocate fixed-sized blocks for each file
–  Meta-data: Fixed-sized array of block pointers

•  Allocate space for ptrs at file creation time

•  Advantages
–  No external fragmentation
–  Files can be easily grown, with no limit
–  Supports random access

•  Disadvantages
–  Large overhead for meta-data:

•  Wastes space for unneeded pointers (most files are small!)

4

Indexed Allocation
•  Brings all pointers together into the index block
•  Logical view

index table

Example of Indexed Allocation

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

15

Multi-Level Indexed Files
•  Variation of Indexed Allocation

–  Dynamically allocate hierarchy of pointers to blocks as needed
–  Meta-data: Small number of pointers allocated statically

•  Additional pointers to blocks of pointers
–  Examples: UNIX FFS-based file systems

•  Comparison to Indexed Allocation
–  Advantage: Does not waste space for unneeded pointers

•  Still fast access for small files
•  Can grow to what size??

–  Disadvantage: Need to read indirect blocks of pointers to calculate addresses (extra
disk read)

•  Keep indirect blocks cached in main memory

indirect!
double!
indirect! indirect! triple!

indirect!

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

16

Free space management

•  How do you remember which blocks are free?
–  What operations are needed?

•  Free a block
•  Get a free block(s) -- in some particular location

•  Free list: linked list of free blocks
–  Advantages: simple, constant-time operation
–  Disadvantage: rapidly loses locality
–  Used in Unix UFS and FAT

•  Bitmap: bitmap of all blocks indicating which are free
–  Advantages: can find strings of consecutive free blocks

•  X86 provides instructions to find 1 bits
–  Disadvantages: space overhead
–  Used in Unix FFS

5

Linked Free Space List on Disk
Directory Implementation

•  A directory is a file containing
–  name
–  metadata about file (Windows)

•  size
•  owner
•  data locations

–  Pointer to file metadata (Unix)

•  Organization
–  Linear list of file names with pointer to the data blocks

•  simple to program
•  time-consuming to execute

–  BTree – balanced tree sorted by name
•  Faster searching for large directories

Efficiency and Performance

•  Efficiency dependent on disk allocation and directory
algorithms

•  How many accesses does it take to open a file?
•  Once you read a block, what do you have to do to read the next

block?

•  Performance
–  disk cache – separate section of main memory for frequently

used blocks
–  free-behind and read-ahead – techniques to optimize

sequential access
•  free-behind: release block as soon as read (make space for

others)
•  read ahead: read blocks before you need them (so you don’t

need to wait)

Caching

•  File systems cache commonly used data in the
buffer cache
–  Set of disk blocks cached in memory
–  Associated metadata say whether clean/dirty/where on disk

it belongs.
–  Buffer cache is a layer below file system

•  File system asks buffer cache for data
•  If not available, buffer cache will ask disk for data

•  File systems may cache metadata separately
–  Linux “dentry”s store directory entries for fast name parsing
–  Linux “inodes” store file metadata (block location) for fast file

access

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

20

6

Page Cache

•  A page cache caches pages rather than disk blocks
using virtual memory techniques

•  Memory-mapped I/O uses a page cache

•  Routine I/O through the file system uses the buffer
(disk) cache

•  This leads to the following figure

I/O Without a Unified Buffer Cache

Unified Buffer Cache

•  A unified buffer cache uses the same page cache to
cache both memory-mapped pages and ordinary file
system I/O

I/O Using a Unified Buffer Cache

7

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

25

The flat (i-node) file system

•  Each file is known by a number, which is the number
of the i-node
–  seriously – 1, 2, 3, etc.!
–  why is it called “flat”?

•  Files are created empty, and grow when extended
through writes

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

26

The tree (directory, hierarchical) file system

•  A directory is a flat file of fixed-size entries
•  Each entry consists of an i-node number and a file

name
i-node number File name

152 .
18 ..

216 my_file
4 another_file

93 oh_my_god
144 a_directory

•  It’s as simple as that!

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

27

Using directories
•  How do you find files?

–  Read the directory, search for the name you want (checking
for wildcards)

•  How do you list files (ls)
–  Read directory contents, print name field

•  How do you list file attributes (ls -l)
–  Read directory contents, open inodes, print name +

attributes

•  How do you sort the output (ls -S, ls -t)
–  The FS doesn’t do it -- ls does it!

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

28

The “block list” portion of the i-node
•  Clearly it points to blocks in the file contents area
•  Must be able to represent very small and very large files. How?
•  Each inode contains 15 block pointers

–  first 12 are direct blocks (i.e., 4KB blocks of file data)
–  then, single, double, and triple indirect indexes

0
1

12
13
14

…

…

…

…

…

…

…

8

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

29

So …
•  Only occupies 15 x 4B in the i-node
•  Can get to 12 x 4KB = a 48KB file directly

–  (12 direct pointers, blocks in the file contents area are 4KB)
•  Can get to 1024 x 4KB = an additional 4MB with a

single indirect reference
–  (the 13th pointer in the i-node gets you to a 4KB block in the

file contents area that contains 1K 4B pointers to blocks
holding file data)

•  Can get to 1024 x 1024 x 4KB = an additional 4GB
with a double indirect reference
–  (the 14th pointer in the i-node gets you to a 4KB block in the

file contents area that contains 1K 4B pointers to 4KB blocks
in the file contents area that contian 1K 4B pointers to blocks
holding file data)

•  Maximum file size is 4TB
3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
30

File system consistency

•  Both i-nodes and file blocks are cached in memory
•  The “sync” command forces memory-resident disk

information to be written to disk
–  system does a sync every few seconds

•  A crash or power failure between sync’s can leave an
inconsistent disk

•  You could reduce the frequency of problems by
reducing caching, but performance would suffer big-
time

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

31

i-check: consistency of the flat file system

•  Is each block on exactly one list?
–  create a bit vector with as many entries as there are blocks
–  follow the free list and each i-node block list
–  when a block is encountered, examine its bit

•  If the bit was 0, set it to 1
•  if the bit was already 1

–  if the block is both in a file and on the free list, remove it from the
free list and cross your fingers

–  if the block is in two files, call support!

–  if there are any 0’s left at the end, put those blocks on the
free list

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

32

d-check: consistency of the directory file system

•  Do the directories form a tree?
•  Does the link count of each file equal the number of

directories links to it?
–  I will spare you the details

•  uses a zero-initialized vector of counters, one per i-node
•  walk the tree, then visit every i-node

9

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

33

Protection systems

•  FS must implement some kind of protection system
–  to control who can access a file (user)
–  to control how they can access it (e.g., read, write, or exec)

•  More generally:
–  generalize files to objects (the “what”)
–  generalize users to principals (the “who”, user or program)
–  generalize read/write to actions (the “how”, or operations)

•  A protection system dictates whether a given action
performed by a given principal on a given object
should be allowed
–  e.g., you can read or write your files, but others cannot
–  e.g., your can read /etc/motd but you cannot write to it

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

34

Model for representing protection
•  Two different ways of thinking about it:

–  access control lists (ACLs)
•  for each object, keep list of principals and principals’ allowed actions
•  Like a guest list (check identity of caller on each access)

–  capabilities
•  for each principal, keep list of objects and principal’s allowed actions
•  Like a key (something you present to open a door)

•  Both can be represented with the following matrix:

/etc/passwd /home/swift /home/guest

root rw rw rw

swift r rw r

guest r
principals

objects

ACL

capability

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

35

ACLs vs. Capabilities
•  Capabilities are easy to transfer

–  they are like keys: can hand them off
–  they make sharing easy

•  ACLs are easier to manage
–  object-centric, easy to grant and revoke

•  to revoke capability, need to keep track of principals that have it
•  hard to do, given that principals can hand off capabilities

•  ACLs grow large when object is heavily shared
–  can simplify by using “groups”

•  put users in groups, put groups in ACLs
•  you are could be in the “cs537-students” group

–  additional benefit
•  change group membership, affects ALL objects that have this group in

its ACL

3/11/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

36

Protection in the Unix FS

•  Objects: individual files
•  Principals: owner/group/world
•  Actions: read/write/execute

•  This is pretty simple and rigid, but it has proven to be
about what we can handle!

