
3/27/09

1

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

1

CS 537
Lecture 15

Distributed File Systems

Michael Swift

2

Distributed File Systems
•  Goal: view a distributed system as a file system

–  Storage is distributed
–  Web tries to make world a collection of hyperlinked

documents

•  Issues not common to usual file systems
–  Naming transparency
–  Load balancing
–  Scalability
–  Location and network transparency
–  Fault tolerance

•  We will look at some of these today

3

Transfer Model
•  Upload/download Model:

–  Client downloads file, works on it, and writes it back on
server

–  Simple and good performance
•  Remote Access Model:

–  File only on server; client sends commands to get work done

4

Naming transparency
•  Naming is a mapping from logical to physical objects
•  Ideally client interface should be transparent

–  Not distinguish between remote and local files
–  /machine/path or mounting remote FS in local hierarchy are

not transparent

•  A transparent DFS hides the location of files in
system

•  2 forms of transparency:
–  Location transparency: path gives no hint of file location

•  /server1/dir1/dir2/x tells x is on server1, but not where server1
is

–  Location independence: move files without changing names
•  Separate naming hierarchy from storage devices hierarchy

3/27/09

2

5

Caching

•  Keep repeatedly accessed blocks in cache
–  Improves performance of further accesses

•  How it works:
–  If needed block not in cache, it is fetched and cached
–  Accesses performed on local copy
–  One master file copy on server, other copies distributed in DFS
–  Cache consistency problem: how to keep cached copy

consistent with master file copy

•  Where to cache?
–  Disk: Pros: more reliable, data present locally on recovery
–  Memory: Pros: diskless workstations, quicker data access,
–  Servers maintain cache in memory

6

Network File System (NFS)
•  Developed by Sun Microsystems in 1984

–  Used to join FSes on multiple computers as one logical
whole

•  Used commonly today with UNIX systems
•  Assumptions

–  Allows arbitrary collection of users to share a file system
–  Clients and servers might be on different LANs
–  Machines can be clients and servers at the same time

•  Architecture:
–  A server exports one or more of its directories to remote

clients
–  Clients access exported directories by mounting them

•  The contents are then accessed as if they were local

7

Example

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

8

NFS
•  NFS defines a set of RPC operations for remote file

access:
–  searching a directory
–  reading directory entries
–  manipulating links and directories
–  reading/writing files

•  Every node may be both a client and server.

3/27/09

3

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

9

Remote Procedure Call
•  Basic problem when dealing with machine across a

network: how do you write the code to communicate?
•  Option 1: messages

–  Programmer copies message into an array of bytes, “sends”
to other computer, “receives” an array of bytes in response
at some point

•  Option 2: RPC
–  Make a procedure call that executes on the other side
–  Tool generates code to copy arguments into a message,

send data, unpack data, call server code, copy result into a
message, send back, receive reply, and return to caller

10

NFS Protocol
•  Supports directory and file access via remote

procedure calls (RPCs)
•  All UNIX system calls supported other than open &

close
•  Open and close are intentionally not supported

–  For a read, client sends lookup message to server
–  Server looks up file and returns handle
–  Unlike open, lookup does not copy info in internal system

tables
–  Subsequently, read contains file handle, offset and num

bytes
–  Each message is self-contained

•  Pros: server is stateless, i.e. no state about open files
•  Cons: Locking is difficult, no concurrency control

11

NFS Implementation
•  Three main layers:
•  System call layer:

–  Handles calls like open, read and close
•  Virtual File System Layer:

–  Maintains table with one entry (v-node) for each open file
–  v-nodes indicate if file is local or remote

•  If remote it has enough info to access them
•  For local files, FS and i-node are recorded

•  NFS Service Layer:
–  This lowest layer implements the NFS protocol

12

NFS Layer Structure

3/27/09

4

13

Cache coherency
•  Clients cache file attributes and data

–  If two clients cache the same data, cache coherency is lost

•  Solutions:
–  Each cache block has a timer (3 sec for data, 30 sec for dir)

•  Entry is discarded when timer expires
–  On open of cached file, its last modify time on server is

checked
•  If cached copy is old, it is discarded

–  Every 30 sec, cache time expires
•  All dirty blocks are written back to the server

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

14

Andrew File System (AFS)
•  Developed at CMU to support all of its student

computing.
•  Consists of workstation clients and dedicated file

server machines.
•  Workstations have local disks, used to cache files

being used locally (originally whole files, now 64K file
chunks).

•  Andrew has a single name space -- your files have
the same names everywhere in the world.

•  Andrew is good for distant operation because of its
local disk caching: after a slow startup, most
accesses are to local disk.

15

AFS Overview
•  Based on the upload/download model

–  Clients download and cache files
–  Server keeps track of clients that cache the file
–  Clients upload files at end of session

•  Whole file caching is central idea behind AFS
–  Later amended to block operations
–  Simple, effective

•  AFS servers are stateful
–  Keep track of clients that have cached files
–  Recall files that have been modified

16

AFS Details
•  Has dedicated server machines
•  Clients have partitioned name space:

–  Local name space and shared name space
–  Cluster of dedicated AFS servers present shared name

space

•  AFS file name works anywhere:
–  /afs/cs.wisc.edu/u/s/w/swift

3/27/09

5

17

AFS: Operations and Consistency

•  AFS caches entire files from servers
–  Client interacts with servers only during open and close

•  OS on client intercepts calls, and passes it to AFS
service on client (Venus)
–  Venus is a client process that caches files from servers
–  Venus contacts AFS server only on open and close

•  Does not contact if file is already in the cache, and not
invalidated

–  Reads and writes bypass Venus and go right to file cached in
local file system.

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

18

AFS Caching and Consistency
•  Need for scaling led to reduction of client-server message traffic.
•  Once a file is cached, all operations are performed locally.

–  Cache is on disk, so normal FS and FS operations work here
•  On close, if the file is modified, it is replaced on the server.

–  What happens when multiple clients share a file?
•  The client assumes that its cache is up to date, unless it

receives a callback message from the server saying otherwise.
On file open, if the client has received a callback on the file, it
must fetch a new copy; otherwise it uses its locally-cached
copy.
–  How does this compare to NFS?

19

Summary
•  NFS:

–  Simple distributed file system protocol. No open/close
–  Stateless server

•  Has problems with cache consistency, locking protocol

•  AFS:
–  More complicated distributed file system protocol
–  Stateful server

•  session semantics: consistency on close

