
1

9/10/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

1

CS 537
Lecture 17

OS Structure

Michael Swift

9/10/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

2

OS Control Flow

Operating System Modules

Idle
Loop

From boot

Initialization

RTI

Interrupt System call
main()

Exception

9/10/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

3

OS structure
•  It’s not always clear how to stitch OS modules

together:

Memory
Management

I/O System

Secondary Storage
Management

File System

Protection System

Accounting System

Process Management

Command Interpreter

Information Services

Error Handling

9/10/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

4

OS structure

•  An OS consists of all of these components, plus:
–  many other components
–  system programs (privileged and non-privileged)

•  e.g., bootstrap code, the init program, …

•  Major issue:
–  how do we organize all this?
–  what are all of the code modules, and where do they exist?
–  how do they cooperate?

•  Massive software engineering and design problem
–  design a large, complex program that:

•  performs well, is reliable, is extensible, is backwards
compatible, …

2

9/10/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

5

Early structure: Monolithic

•  Traditionally, OS’s (like UNIX) were built as a
monolithic entity:

everything

user programs

hardware

OS

9/10/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

6

Monolithic design
•  Examples: MS-DOS, Unix
•  Major advantage:

–  cost of module interactions is low (procedure call)
–  easy to get started
–  requires no HW support

•  Disadvantages:
–  hard to understand
–  hard to modify
–  unreliable (no isolation between system modules)
–  hard to maintain

•  What is the alternative?
–  find a way to organize the OS in order to simplify its design

and implementation

9/10/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

7

Layering
•  The traditional approach is layering

–  implement OS as a set of layers
–  each layer presents an enhanced ‘virtual machine’ to the layer above

•  The first description of this approach was Dijkstra’s THE system
–  Layer 5: Job Managers

•  Execute users’ programs
–  Layer 4: Device Managers

•  Handle devices and provide buffering
–  Layer 3: Console Manager

•  Implements virtual consoles
–  Layer 2: Page Manager

•  Implements virtual memories for each process
–  Layer 1: Kernel

•  Implements a virtual processor for each process
–  Layer 0: Hardware

•  Each layer can be tested and verified independently

9/10/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

8

Problems with layering

•  Imposes hierarchical structure
–  limited information available because each layer depends

only on layers below
–  but real systems are more complex:

•  file system requires VM services (buffers)
•  VM would like to use files for its backing store

–  strict layering isn’t flexible enough

•  Poor performance
–  each layer crossing has overhead associated with it

•  Disjunction between model and reality
–  systems modeled as layers, but not really built that way

3

9/10/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

9

Microkernels
•  Popular in the late 80’s, early 90’s

–  recent resurgence of popularity for small devices
•  Goal:

–  minimize what goes in kernel
–  organize rest of OS as user-level processes
–  communicate with messages

•  This results in:
–  better reliability (isolation between components)
–  ease of extension and customization
–  poor performance (user/kernel boundary crossings) (4 vs 2)

•  First microkernel system was Hydra (CMU, 1970)
–  follow-ons: Mach (CMU), Chorus (French UNIX-like OS),

and in some ways NT (Microsoft), OS X (Apple)

9/10/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

10

Microkernel structure illustrated

hardware

microkernel

system
processes

user
processes

low-level VM
communication

protection
processor

control

file system network

scheduling

paging

netscape powerpoint

apache

user m
ode

kernel

device control

Threads Services

Services

9/10/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

11

Modules
•  Most modern OSs implement kernel modules

–  Uses object-oriented approach
–  Each core component is separate
–  Each talks to the others over known interfaces
–  Each is loadable as needed within the kernel

•  Overall, similar to layers but with more flexible
–  Modules can interact with many other modules
–  Standard module interfaces allow replacement, extension via layering

•  Examples: Solaris, Linux, MAC OS X, Windows Vista
•  Similar to microkernel, but:

–  no isolation
–  less reliability
–  harder to program
–  performs better

Other structures
•  Question: do you need hardware support for protection?
•  Singularity: reorganize OS around software protection

–  Type-safe language (C#) for isolation, safety
–  Microkernel with memory, IO, scheduling, IPC
–  Communication via interfaces and typed channels
–  extensions are separate processes

•  Drivers
•  Network protocols
•  File systems

•  Benefits:
–  Avoid cost of HW protection: Runs in kernel mode with no virtual memory
–  Fast IPC due to direct invocation

•  Drawbacks
–  Limited to a single language environment
–  Requires rewriting the world

9/10/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

12

