
1

4/28/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

1

CS 537
Lecture 21

Semaphores

Michael Swift

4/28/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

2

Locking Review
•  Locking can be done by:

–  Software spin locks (Peterson’s algorithm)
–  Hardware spin locks (test and set)
–  Disabling interrupts

–  Which is best, when?
•  Locks protect shared variables

func(int * x)
// x may be global

int y, z;

y = *x + 2;

z = y*5

return z;

–  Locks protect access to *x, not y and z

4/28/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

3

Motivation for Semaphores
•  Locks only provide mutual exclusion

–  Ensure only one thread is in critical section at a time
•  May want more: Place ordering on scheduling of threads

–  Example: Producer/Consumer
•  Producer: Creates a resource (data)
•  Consumer: Uses a resource (data)

–  Example
- ps | grep “gcc” | wc

–  Don’t want producers and consumers to operate in lock step
•  Place a fixed-size buffer between producers and consumers
•  Synchronize accesses to buffer
•  Producer waits if buffer full; consumer waits if buffer empty

4/28/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

4

Semaphores

•  semaphore = a synchronization primitive
–  higher level than locks
–  invented by Dijkstra in 1965, as part of the THE os

•  A semaphore is:
–  a variable that is manipulated atomically through two

operations, signal and wait
–  wait(semaphore): decrement, block until semaphore is open

•  also called P(), after Dutch word for test, also called down()
–  signal(semaphore): increment, allow another to enter

•  also called V(), after Dutch word for increment, also called up()

–  Plus sem_init(counter) to set first counter value

2

4/28/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

5

Blocking in Semaphores
•  Each semaphore has an associated queue of processes/threads

–  when wait() is called by a thread,
•  if semaphore is “available”, thread continues
•  if semaphore is “unavailable”, thread blocks, waits on queue

–  signal() opens the semaphore
•  if thread(s) are waiting on a queue, one thread is unblocked
•  if no threads are on the queue, the signal is remembered for next time a

wait() is called
•  In other words, semaphore has history

–  this history is a counter
–  if counter falls below 0 (after decrement), then the semaphore is

closed
•  wait decrements counter
•  signal increments counter

4/28/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

6

Hypothetical Implementation
type semaphore = record

value: integer:

L: list of processes;

end

wait(S):

S.value = S.value - 1;

if S.value < 0

add this process to S.L;

block;

signal(S):

S.value = S.value + 1;

if S.value <= 0

remove a process P from 

S.L;

wakeup P

wait()/signal() are
critical sections!

Hence, they must be
executed atomically
with respect to each

other.

4/28/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

7

Semaphore Example
•  What happens if sem is initialized to 2?

–  Scenario: Three processes call sem_wait(&sem)

•  Observations
–  Sem value is negative --> Number of waiters on queue
–  Sem value is positive --> Number of threads that can be in c.s. at

same time

4/28/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

8

Two types of semaphores

•  Binary semaphore (aka mutex semaphore)
–  guarantees mutually exclusive access to resource
–  only one thread/process allowed entry at a time
–  counter is initialized to 1

•  Counting semaphore (aka counted semaphore)
–  represents a resources with many units available
–  allows threads/process to enter as long as more units are

available
–  counter is initialized to N

•  N = number of units available

3

4/28/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

9

Mutual Exclusion with Semaphores
•  Previous example with locks:

Void deposit (int amount) {

mutex_lock(&mylock);

balance += amount;

mutex_unlock(&mylocak);

}

•  Example with semaphores:
Void deposit(int amount) {

wait(&sem);

balance += amount;

signal(&sem);

}

•  To what value should sem be initialized???

4/28/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

10

Example: bounded buffer problem

•  AKA producer/consumer problem
–  there is a buffer in memory

•  with finite size N entries
–  a producer process inserts an entry into it
–  a consumer process removes an entry from it

•  Processes are concurrent
–  so, we must use synchronization constructs to control

access to shared variables describing buffer state

4/28/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

11

Producer/Consumer: Single Buffer
•  Simplest case:

–  Single producer thread, single consumer thread
–  Single shared buffer between producer and consumer

•  Requirements
–  Consumer must wait for producer to fill buffer
–  Producer must wait for consumer to empty buffer (if filled)

•  Requires 3 semaphores
–  emptyBuffer: Initialize to ???
–  fullBuffer: Initialize to ???
–  mutex: Initialize to ???

Producer

While (1) {

wait(&emptyBuffer); 

wait(&mutex);

Fill(&buffer); 

signal(&mutex); 

signal(&fullBuffer);

}

Consumer

While (1) { 

wait(&fullBuffer); 

wait(&mutex); 

Use(&buffer); 

signal(&mutex); 

signal(&emptyBuffer); 

}
 4/28/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

12

Example: Readers/Writers

•  Basic problem:
–  object is shared among several processes
–  some read from it
–  others write to it

•  We can allow multiple readers at a time
–  why?

•  We can only allow one writer at a time
–  why?

4

4/28/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

13

Readers/Writers using Semaphores
semaphore mutex
; controls access to readcount

semaphore wrt
; control entry to a writer or first reader

int readcount
; number of readers

write process:

wait(wrt)
; any writers or readers?

 <perform write operation>

signal(wrt)
; allow others

read process:

wait(mutex)
; ensure exclusion

readcount = readcount + 1 ; one more reader

if (readcount == 1) wait(wrt) ; if we’re the first, synch with
writers

signal(mutex)

<perform reading>

wait(mutex)
; ensure exclusion

readcount = readcount - 1 ; one fewer reader

if (readcount = 0) signal(wrt) ; no more readers, allow a writer

signal(mutex)

4/28/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

14

Readers/Writers notes

•  Note:
–  the first reader blocks if there is a writer

•  any other readers will then block on mutex
–  if a writer exists, last reader to exit signals waiting writer

•  can new readers get in while writer is waiting?
–  when writer exits, if there is both a reader and writer waiting,

which one goes next is up to scheduler

4/28/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

15

Problems with Semaphores

•  They can be used to solve any of the traditional
synchronization problems, but:
–  semaphores are essentially shared global variables

•  can be accessed from anywhere (bad software engineering)
–  there is no connection between the semaphore and the data

being controlled by it
–  used for both critical sections (mutual exclusion) and for

coordination (scheduling)
–  no control over their use, no guarantee of proper usage

•  Thus, they are prone to bugs
–  another (better?) approach: use programming language

support

