
1

4/30/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

1

CS 537
Lecture 22

Condition Variables/Monitors

Michael Swift

Two Classes of Synchronization
Problems

•  Uniform resource usage with simple scheduling
constraints
–  No other variables needed to express relationships
–  Use one semaphore for every constraint
–  Examples: thread join and producer/consumer

•  Complex patterns of resource usage
–  Cannot capture relationships with only semaphores
–  Need extra state variables to record information
–  Use semaphores such that

•  One is for mutual exclusion around state variables
•  One for each class of waiting

•  Always try to cast problems into first, easier type

4/30/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

2

4/30/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

3

Monitors
•  A programming language construct that supports

controlled access to shared data
–  synchronization code added by compiler, enforced at

runtime
–  why does this help?

•  Monitor is a software module that encapsulates:
–  shared data structures
–  procedures that operate on the shared data
–  synchronization between concurrent processes that invoke

those procedures
•  Monitor protects the data from unstructured access

–  guarantees only access data through procedures, hence in
legitimate ways

4/30/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

4

A monitor

shared data

waiting queue of processes
trying to enter the monitor

operations (procedures) at most one
process in monitor

at a time

2

4/30/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

5

Monitor facilities
•  Mutual exclusion

–  only one process can be executing inside at any time
•  thus, synchronization implicitly associated with monitor

–  if a second process tries to enter a monitor procedure, it
blocks until the first has left the monitor

•  more restrictive than semaphores!
•  but easier to use most of the time

•  Once inside, a process may discover it can’t
continue, and may wish to sleep
–  or, allow some other waiting process to continue
–  condition variables provided within monitor

•  processes can wait or signal others to continue
•  condition variable can only be accessed from inside monitor

4/30/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

6

Condition Variables
•  A place to wait; sometimes called a rendezvous point

–  Always used with a monitor lock
–  No value (history) associated with condition variable

•  Three operations on condition variables
–  wait(c)

•  release monitor lock, so somebody else can get in
•  wait for somebody else to signal condition
•  thus, condition variables have wait queues

–  signal(c)
•  wake up at most one waiting process/thread
•  if no waiting processes, signal is lost
•  this is different than semaphores: no history!

–  broadcast(c)
•  wake up all waiting processes/threads

4/30/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

7

Use in a Program
•  As a library (pthreads)

 pthread_mutex_t mu;
 pthread_cond_t co;
 boolean ready;
 void foo() {
 pthread_mutex_lock(&mu);
 while(!ready)
 pthread_cond_wait(&co, &mu);
 …
 ready = TRUE;
 pthread_cond_signal(&co); // unlock and signal
 pthread_mutex_unlock(&mu);

•  As a language (Java)
synchronized withdraw(int amount) {

while (balance < amount) {

wait();

balance -= amount;

if (balance == 0) {

notify();

}

Signaling

•  signal(c) means
–  Wake one thread waiting on this condition variable (if any)

•  Signaller can keep lock and CPU
–  waiter is made ready, but the signaller continues

•  waiter runs when signaller leaves monitor (or waits)
•  condition is not necessarily true when waiter runs again

–  signaller need not restore invariant until it leaves the monitor
–  being woken up is only a hint that something has changed

•  must recheck conditional case

•  Broadcast (or NotifyAll)
–  Wake all threads waiting on condition variable
–  Avoids need for multiple condition variables

4/30/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

8

3

4/30/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

9

Producer/Consumer: pthread monitors
•  Another thread may be scheduled and acquire lock before signalled thread runs
•  Implication: Must recheck condition with while() loop instead of if()

Producer

While (1) {

 mutex_lock(&lock);

 while (slots==N)

 cond_wait(¬_full,&lock);

 myi = get_empty(&buffer);

 Fill(&buffer[myi]);

 slots++;

 cond_signal(¬_empty);

 mutex_unlock(&lock);

}

Consumer !

While (1) {

 mutex_lock(&lock);

 while (slots==0)

 cond_wait(¬_empty,&lock);

 myj = get_filled(&buffer);

 Use(&buffer[myj]);

 slots--;

 cond_signal(¬_full);

 mutex_unlock(&lock);

}

Shared variables

cond_t not_empty, not_full;

int slots = 0;

mutex_t lock;

4/30/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

10

Traffic light
struct traffic_light{

enum direction = {left, right};

enum color = {green, yellow, red};

color current_color[direction] = {green, red};

cond_t changed[direction];

direction current_dir = left;

int in_intersection = 0;

mutex_t *lock;

enter_left(dir)

mutex_lock(lock)

while ((current_dir != dir) && (current_color != green))

cond_wait(changed[dir], loock);

in_intersection++;

mutex_unlock(lock);

return;

exit(dir)

mutex_lock(lock)

in_intersection--;

if (in_intersection == 0) && (current_color[dir] == red)

broadcast(changed[other_dir(dir)]);

mutex_unlock(lock);

4/30/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

11

Traffic light
struct traffic_light{

enum direction = {left, right};

enum color = {green, yellow, red};

color current_color[direction] = {green, red};

cond_t changed[direction];

direction current_dir = left;

int in_intersection = 0;

mutex_t *lock;

timer()

mutex_lock(lock);

switch(current_color[direction]) {

case green:

current_color[current_dir] = yellow;

case yellow:

current_color[current_dir] = red;

current_dir = other_dir(current_dir);

current_color[current_dir] = green;

if (in_intersection == 0) {

broadcast(changed[current_dir]);

}

mutex_unock(lock);

4/30/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

12

Examples

•  Traffic light
–  Only one direction of traffic can flow at a time

•  Try more at home from the book!
–  I will correct them if you would like

4

4/30/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

13

Readers and Writers Monitor Example
Monitor ReadersNWriters {

 int WaitingWriters, WaitingReaders, 

NReaders, NWriters;

 Condition CanRead, CanWrite;

Void BeginWrite() {

 if(NWriters == 1 ||  
 NReaders > 0) {

 ++WaitingWriters;

 wait(CanWrite);

 --WaitingWriters;

 }

 NWriters = 1;

}

Void EndWrite() {

 NWriters = 0;

 if(WaitingReaders)

 Signal(CanRead);

 else Signal(CanWrite);

}

Void BeginRead() {

 if(NWriters == 1 || 
 WaitingWriters > 0) {

 ++WaitingReaders;

 Wait(CanRead);

 --WaitingReaders;

 }

 ++NReaders;

 Signal(CanRead);

}

Void EndRead() {

 if(--NReaders == 0)

 Signal(CanWrite);

}

