
1

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

1

CS 537
Lecture 23
Deadlock

CSE 537

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

2

What can go wrong?

•  Starvation: A policy that can leave some a thread not
executing in some situation (even one where the
others collaborate)

•  Deadlock: A policy that leaves all the threads “stuck”,
so that nobody can do anything at all

•  Livelock: A policy that makes them all do something
endlessly without ever making progress!

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

3

Starvation vs Deadlock
•  Starvation vs. Deadlock

–  Starvation: thread waits indefinitely
•  Example, low-priority thread waiting for resources constantly in use

by high-priority threads
– Deadlock: circular waiting for resources

•  Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

– Deadlock ⇒ Starvation but not vice versa
•  Starvation can end (but doesn’t have to)
•  Deadlock can’t end without external intervention

Res 2 Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

4

Real World Deadlocks?

•  Gridlock

2

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

5

Testing for deadlock

•  How do cars do it?
–  Never block an intersection
–  Must back up if you find yourself doing so

•  Why does this work?
–  “Breaks” a wait-for relationship
–  Illustrates a sense in which intransigent waiting (refusing to

release a resource) is one key element of true deadlock!

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

6

Testing for deadlock

•  Steps
–  Collect “process state” and use it to build a graph

•  Ask each process “are you waiting for anything”?
•  Put an edge in the graph if so

–  We need to do this in a single instant of time, not while
things might be changing

•  Now need a way to test for cycles in our graph

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

7

Testing for deadlock

•  One way to find cycles
–  Look for a node with no outgoing edges
–  Erase this node, and also erase any edges coming into it

•  Idea: This was a process people might have been waiting for,
but it wasn’t waiting for anything else

–  If (and only if) the graph has no cycles, we’ll eventually be
able to erase the whole graph!

•  This is called a graph reduction algorithm

5/5/09 © 2005 Gribble, Lazowska, Levy 8

Resource allocation graph with no cycle

Silberschatz, Galvin and Gagne ©2002

What would
cause a
deadlock?

3

5/5/09 © 2005 Gribble, Lazowska, Levy 9

Resource allocation graph with a deadlock

Silberschatz, Galvin and Gagne ©2002 5/5/09 © 2005 Gribble, Lazowska, Levy 10

Resource allocation graph with a cycle
but no deadlock

Silberschatz, Galvin and Gagne ©2002

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

11

Some questions you might ask
•  If a system is deadlocked, could this go away?

–  No, unless someone kills one of the threads or something causes a
process to release a resource

–  Many real systems put time limits on “waiting” precisely for this
reason. When a process gets a timeout exception, it gives up
waiting and this also can eliminate the deadlock

–  But that process may be forced to terminate itself because often, if
a process can’t get what it needs, there are no other options
available!

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

12

Some questions you might ask

•  Suppose a system isn’t deadlocked at time T.
•  Can we assume it will still be free of deadlock at time

T+1?
–  No, because the very next thing it might do is to run some

process that will request a resource…
… establishing a cyclic wait
… and causing deadlock

4

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

13

Deadlocks

•  Definition: Deadlock exists among a set of processes
if
–  Every process is waiting for an event
–  This event can be caused only by another process in the set

•  Event is the acquire or release of another resource

One-lane bridge

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

14

Four Conditions for Deadlock

•  Coffman et. al. 1971
•  Necessary conditions for deadlock to exist:

–  Mutual Exclusion
•  At least one resource must be held is in non-sharable mode

–  Hold and wait
•  There exists a process holding a resource, and waiting for another

–  No preemption
•  Resources cannot be preempted

–  Circular wait
•  There exists a set of processes {P1, P2, … PN}, such that

–  P1 is waiting for P2, P2 for P3, …. and PN for P1

All four conditions must hold for deadlock to occur

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

15

Dealing with Deadlocks

•  Reactive Approaches: detect and recover
–  Periodically check for evidence of deadlock

•  For example, using a graph reduction algorithm
–  Then need a way to recover

•  Could blue screen and reboot the computer
•  Could pick a “victim” and terminate that thread

–  But this is only possible in certain kinds of applications
–  Basically, thread needs a way to clean up if it gets terminated and

has to exit in a hurry!
•  Often thread would then “retry” from scratch

•  Despite drawbacks, database systems do this

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

16

Dealing with Deadlocks

•  Proactive Approaches:
–  Deadlock Prevention

•  Prevent one of the 4 necessary conditions from arising
•  …. This will prevent deadlock from occurring

•  Ignore the problem
–  Pretend deadlocks will never occur
–  Ostrich approach… but surprisingly common!

5

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

17

Deadlock Prevention #1

•  Approach
–  Ensure 1 of 4 conditions cannot occur
–  Negate each of the 4 conditions

•  No single approach is appropriate (or possible) for all
circumstances

•  No mutual exclusion --> Make resource sharable
–  Example: Read-only files

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

18

Deadlock Prevention #2
•  No Hold-and-wait --> Two possibilities
•  1) Only request resources when have none

–  Release resource before requesting next one

Thread 1

lock(x);

A += 10;

unlock(x);

lock(y);

B += 20;

unlock(y);

lock(x);

A += 30;

unlock(x); !

Thread 2

lock(y);

B += 10;

unlock(y);

lock(x);

A += 20;

unlock(x);

lock(y);

B += 30;

unlock(y); !

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

19

Deadlock Prevention #2

•  No Hold-and-wait
•  2) Atomically acquire all resources at once

–  Example #1: Single lock to protect all

Thread 1
lock(z);

A += 10;

B += 20;

A += B;

A += 30;

unlock(z);

Thread 2

lock(z);

B += 10;

A += 20;

A += B;

B += 30;

unlock(z);

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

20

Deadlock Prevention #2

•  No Hold-and-wait
•  2) Atomically acquire all resources at once

–  Example #2: New primitive to acquire two locks

Thread 1
lock(x,y);

A += 10;

B += 20;

A += B;

unlock(y);

A += 30;

unlock(x); !

Thread 2
lock(x,y);

B += 10;

A += 20;

A += B;

unlock(x);

B += 30;

unlock(y); !

6

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

21

Deadlock Prevention #2
•  Problems w/ acquiring many resources atomically

–  Low resource utilization
•  Must make pessimistic assumptions about resource usage
if (cond1) {

lock(x);

}

if (cond2) {

lock(y);

}

–  Starvation
•  If need many resources, others might keep getting one of them

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

22

Deadlock Prevention #3
•  No “no preemption” --> Preempt resources
•  Example: A waiting for something held by B, then take resource

away from B and give to A
–  Only works for some resources (e.g., CPU and memory)
–  Not possible if resource cannot be saved and restored

•  Can’t take away a lock without causing problems

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

23

Deadlock Prevention #4
•  No circular wait --> Impose ordering on resources

–  Give all resources a ranking; must acquire highest ranked
first

–  How to change Example?

•  Problems?

5/5/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

24

Summary: Handing Deadlock
•  Deadlock prevention

–  Ensure deadlock does not happen
–  Ensure at least one of 4 conditions does not occur

•  Deadlock detection and recovery
–  Allow deadlocks, but detect when occur
–  Recover and continue

•  Ignore
–  Easiest and most common approach

