
1

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

1

CS 537
Section 2: The Shell Project

Michael Swift

Questions on Homework 1
•  You can skip 1.8 about the “device-status table”

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

2

Questions on Project 0
•  Due 9 pm tonight in the “handin” directory
•  Any problems?

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

3 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

4

Project 1 Goal
•  Get even more used to programming in C and Unix
•  Learn how the Unix shell works
•  Understand process control functions

–  fork/exec
–  wait

•  Understand string processing
–  strtok()

2

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

5

What is a shell?
•  Command line interpreter

–  You type “ls /etc”
–  The shell invokes the first parameter as a command, with the

remainder as the parameters
–  eg: exec(ls,”/etc”)

•  Built-in commands
–  Most commands are separate executable programs

•  ls, rm, mv, make, gcc
–  Some commands are interpreted by the shell

•  cd, exit

•  In your shell, the built-in commands are “exit”, “echo”,
“pwd”, and “cd”

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

6

Interactive vs Batch
•  Interactive

–  User types commands in, hits return to invoke them

•  Batch
–  shell reads from an input file

•  What is the difference?
–  where the commands come from

•  How do you code this?
–  Change which file you read from

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

7

Process Control
•  Your shell should execute the next command line
after the previous one terminates (unless …)
–  you must wait for any programs that you launch to finish

•  You can launch multiple simultaneous commands
with “;” separating them (not needed at the end)
–  ls -l ; cat file
–  You need to wait for ls and cat to finish here

•  Sequences of commands ending in ‘&’ can launch in
parallel:
–  echo “this” ; echo “that” & echo “hello” ; echo “goodbye”
–  hello / goodbye don’t wait for (this / that)

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

8

Hints
•  A shell is a loop

–  read input
–  execute program
–  wait program
–  repeat

•  Useful routines
–  fgets() for string parsing
–  strtok() for parsing

•  Executing commands
–  fork() creates a new process
–  execvp() runs a new program and does path processing
–  wait(), waitpid() waits for a child process to terminate

3

parsing with strtok
include <string.h>
char *strtok(char str, char * sep);

•  the strtok() function tokenizes a string into words
–  str is the strong to tokenize
–  sep are the characters that separate tokens, e.g., space, tab, new

line
–  strtok remembers the strong after the first call

•  Example:
tmp = strtok(buffer,” \t\n"); 
while (tmp) { 
 cmds[num_cmds] = tmp; 
 num_cmds++; 
 tmp = strtok(NULL,"\n \t"); 
}

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

9

strtok Things to Remember
•  strtok() modifies the string

–  It replaces the separator with a null character
–  strtok() returns NULL when you get the last token of a string
–  As long as the buffer you parse remains allocated, you can

store the pointers returned from strtok()

•  You can use strtok() again on the strings returned
from strtok to parse with different separators

•  e.g., separate a strong into commands, and then a command
into arguments

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

10

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

11

Managing your code
•  Be sure to keep old versions in case you delete

something useful
–  Easy technique: a backup (or more) directories
–  Better technique: revision control

•  cvs: concurrent version control
•  stores history of programs
•  can commit changes when you have working code, or as a

checkpoint of your work.

