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CS 537 
Section 7 

Virtual memory 

Michael Swift 

Quiz # 3 Answers 
•  Question 1: accessing other memory 
•  Question 2: page tables (covered in class) 
•  Question 3: TLBs 
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Project 2 Questions 
•  I’d like to meet with every group for about 15 minutes 

this week. 
–  Tell me about your design and plan 

•  Break the problem into modules 
•  Figure out what each module does 
•  Figure out the interface 

–  function calls in to the module 
–  function calls out of the module 

–  Write and test modules separately 
•  Page table 
•  Page replacement 

–  Integrate them all 
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Implementing Page replacement 
•  How should you implement LRU 
•  How should you implement 2nd chance FIFO 
•  How should you implement Clock 
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Data structures   
•  What data structures do you need? 

–  On every memory reference, you need to check whether a 
virtual page number is in memory 

•  you probably want an array indexed by virtual page number 
–  On every memory reference, you may need to: 

•  update a referenced bit 
•  rearrange the order of an LRU list 
•  Where do these go? 

–  To remove a page, you need to look at the set of physical 
page frames 

•  to find one to remove 
–  To remove a page, you need access to the virtual page to 

mark it invalid 
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Modules 
•  What are some modules to have in your code? 

–  Clearly, page replacement policies should be separate 
modules 

•  What goes in the common code? 
–  The main loop 
–  Handling a hit in the page table 
–  Common data structures 

•  Inserting a virtual->physical mapping 
•  removing a virtual->physical mapping 
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Linux Virtual Memory 
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Memory Management 
•  Linux’s physical memory-management system deals 

with allocating and freeing pages, groups of pages, 
and small blocks of memory 

•  It has additional mechanisms for handling virtual 
memory, memory mapped into the address space of 
running processes 

•  Splits memory into 3 different zones due to hardware 
characteristics 
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Relationship of Zones and Physical Addresses 
on 80x86 3 Zones 

•  ZONE_DMA 
–  0-16M (i386) 
–  DMA capability: some device driver need to use this memory 

for I/O 
•  ZONE_NORMAL 

–  16M-896M (i386) 
–  Normal memory direct mapped by kernel 

•  ZONE_HIGHMEM 
–  >896M (i396) 
–  Not used in 64-bit architecture 

Physical Pages – Page Frame DB 

free_area[0] 

… 
free_area[9] 

zone_pgdat 
zone_mem_map 

List List List 

struct page { 
  struct list_head list; 
  ... 
  atomic_t count; 
  unsigned long flags; 
  struct list_head lru; 
  … 
} mem_map_t; 

Managing Physical Memory 
•  The page allocator allocates and frees all physical pages; it 

can allocate ranges of physically-contiguous pages on 
request 

•  The allocator uses a buddy-heap algorithm to keep track of 
available physical pages 
–  Each allocatable memory region is paired with an adjacent 

partner 
–  Whenever two allocated partner regions are both freed up they 

are combined to form a larger region 
–  If a small memory request cannot be satisfied by allocating an 

existing small free region, then a larger free region will be 
subdivided into two partners to satisfy the request 

•  Memory allocations in the Linux kernel occur either statically 
(drivers reserve a contiguous area of memory during system 
boot time) or dynamically (via the page allocator) 

•  Also uses slab allocator for kernel memory 
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Page Allocation 
•  Contiguous and non-contiguous allocation 
•  The Buddy System Algorithm 

–  Pages are allocated in blocks which are powers of 2 in size 
(1, 2, 4, 8, 16, 32, 64, 128, 256, 512 pages) 

–  Each size with its own free list (called free area) 
–  De-allocation: if the adjacent buddy block is also free, 

combine to form a new free block for the next size block of 
pages 

•  Data structure: free_area_t 

Splitting of Memory in a Buddy Heap 

Virtual Memory (Cont.) 
•  The Linux kernel reserves a constant, architecture-

dependent region of the virtual address space of 
every process for its own internal use 

•  This kernel virtual-memory area contains two regions: 
–  A static area that contains page table references to every 

available physical page of memory in the system, so that 
there is a simple translation from physical to virtual 
addresses when running kernel code 

–  The reminder of the reserved section is not reserved for any 
specific purpose; its page-table entries can be modified to 
point to any other areas of memory 
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vm_next 

vm_next 

Linux Organizes VM as Collection 
 of “Areas”  

task_struct 
mm_struct 
pgd mm 

mmap 

vm_area_struct 
vm_end 

vm_prot 
vm_start 

vm_end 

vm_prot 
vm_start 

vm_end 

vm_prot 

vm_next 

vm_start 

process virtual memory 

text 

data 

shared libraries 

0 

0x08048000 

0x0804a020 

0x40000000 

–  pgd:  
•  Page directory address 

–  vm_prot: 
•  Read/write permissions 

for this area 
–  vm_flags 

•  Shared with other 
processes or private to 
this process 

vm_flags 

vm_flags 

vm_flags 

‘mm_struct’ 
•  Each application-process uses a different mapping of 

physical memory regions into the Pentium’s “virtual” 
address-space, so one process can’t access memory 
owned by another process (i.e., private regions) 

•  The OS switches these mapping when it suspends 
one process to resume another 

•  Each task’s mapping is in its ‘task_struct’ 

Page Fault 
•  Exception handler 

–  Raised by address translation (hardware) 
–  Call do_page_fault() to handle this interrupt 

•  do_page_fault() 
–  Architecture-specific 
–  i386: arch/i386/mm/fault.c 
–  Find a page frame in the physical memory 
–  Load the missing page in 
–  Update the page tables 

Linux Page Fault Handling  

vm_area_struct 
vm_end 

r/o 

vm_next 

vm_start 

vm_end 

r/w 

vm_next 

vm_start 

vm_end 

r/o 

vm_next 

vm_start 

process virtual memory 

text 

data 

shared libraries 

0 

•  Is the VA legal? 
–  I.e. is it in an area 

defined by a 
vm_area_struct? 

–  If not then signal 
segmentation violation 
(e.g. (1)) 

•  Is the operation 
legal? 
–  I.e., can the process 

read/write this area? 
–  If not then signal 

protection violation 
(e.g., (2)) 

•  If OK, handle fault 
–  E.g., (3) 

write 

read 

read 
1 

2 

3 
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do_page_fault() 
  … 
  vma = find_vma(mm, address); 
  if (!vma) 
   goto bad_area; 
  if (vma->vm_start <= address) 
   goto good_area; 
  … 
 good_area: 
  … 
  handle_mm_fault(mm, vma, address, write); 
  … 
 bad_area: 
  … 
  force_sig_info(SIGSEGV, &info, tsk); 
  … 

handle_mm_fault() 
  … 
  pgd = pgd_offset(mm, address); 
  pmd = pmd_alloc(mm, pgd, address); 
  if (pmd) { 
   pte = pte_alloc(mm, pmd, address); 
   if (pte) 
    return handle_pte_fault(...); 
  } 
  … 
 handle_pte_fault():   

–  do_no_page() if pte entry is all-zero 
–  Do_swap_page() if pte entry is none-zero 

Contiguous vs Non-Contiguous Noncontiguous Memory 
•  Noncontiguous page frames in contiguous linear 

address 
–  Not all virtual memory maps to the contiguous page frames 
–  Make sense for infrequent use 

•  To allocate (in include/linux/vmalloc.h) 
–  void *vmalloc(unsigned long size) 

•  To release 
–  void vfree(const void * addr) 
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Backing Store 
•  Each VM area can be mapped to a file (in secondary 

memory) 
•  Explicit memory mapping through system call 

–  mmap(), munmap(), mremap() 

•  Implicit mmaping 
–  Code segment (loading from an excutable binary file) 
–  Swapping (mapped to the swap file) 

VM Area: Backing Store 
•  Data structure (in include/linux/mm.h) 

struct vm_area_struct { 
 .... 
 unsigned long vm_pgoff; /* offset in page */ 
 struct file * vm_file; /* mapped file */ 
 .... 

}; 

Swapping and Page Cache 
•  For Pages in a Process’s User Space 

–  Swap: Secondary Memory on the disk 
–  Page Cache: Main Memory 

•  Data Structure: 3 sets of lists 
–  Active pages, usually mapped by a process’s PTE 

•   active_list (in mm/page_alloc.c) 
–  Inactive, unmapped, clean or dirty 

•   inactive_dirty_list (in mm/page_alloc.c) 
–  Clean pages, unmapped (one list per zone) 

•   zone_t.inactive_clean_list (in include/linux/mmzone.h) 

Kernel Swap Daemon 
•  Implemented as a kernel thread 

–  kswapd() (in mm/vmscan.c) 
–  Wake up periodically 

•  Wake up more frequently if memory shortage 

•  Check memory and if memory is tight 
–  Age pages that have not be used 
–  Move pages to inactive lists 
–  Write dirty pages to disk 
–  Swap pages out if necessary 
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More kswapd() 
•  Call swap_out() to scan inactive page lists 

–  Removes page reference from process’ s page table 
–  Actual swapping is done independently by file I/O 

•  Call refill_inactive_scan() to 
–  Scan the active_list to find unused page 
–  Call age_page_down() to reduce page->age count 
–  If page->age is zero, move to inactive_dirty_list 

•  Call page_launder() to clean dirty pages: 
–  Scan inactive_dirty_list for dirty pages, write to disk 
–  Move clean pages to the zone’ s inactive_clean_list 

Demand Paging 
•  Page frame for a VM area is not in core 

–  Page frame is not allocated when VM area is created 
–  Page frame can be swapped out 

•  Handled by page fault 


