
3/3/09

1

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

1

CS 537
Section 7

Virtual memory

Michael Swift

Quiz # 3 Answers
•  Question 1: accessing other memory
•  Question 2: page tables (covered in class)
•  Question 3: TLBs

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

2

Project 2 Questions
•  I’d like to meet with every group for about 15 minutes

this week.
–  Tell me about your design and plan

•  Break the problem into modules
•  Figure out what each module does
•  Figure out the interface

–  function calls in to the module
–  function calls out of the module

–  Write and test modules separately
•  Page table
•  Page replacement

–  Integrate them all

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

3

Implementing Page replacement
•  How should you implement LRU
•  How should you implement 2nd chance FIFO
•  How should you implement Clock

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

4

3/3/09

2

Data structures
•  What data structures do you need?

–  On every memory reference, you need to check whether a
virtual page number is in memory

•  you probably want an array indexed by virtual page number
–  On every memory reference, you may need to:

•  update a referenced bit
•  rearrange the order of an LRU list
•  Where do these go?

–  To remove a page, you need to look at the set of physical
page frames

•  to find one to remove
–  To remove a page, you need access to the virtual page to

mark it invalid

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

5

Modules
•  What are some modules to have in your code?

–  Clearly, page replacement policies should be separate
modules

•  What goes in the common code?
–  The main loop
–  Handling a hit in the page table
–  Common data structures

•  Inserting a virtual->physical mapping
•  removing a virtual->physical mapping

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

6

Linux Virtual Memory

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

7

Memory Management
•  Linux’s physical memory-management system deals

with allocating and freeing pages, groups of pages,
and small blocks of memory

•  It has additional mechanisms for handling virtual
memory, memory mapped into the address space of
running processes

•  Splits memory into 3 different zones due to hardware
characteristics

3/3/09

3

Relationship of Zones and Physical Addresses
on 80x86 3 Zones

•  ZONE_DMA
–  0-16M (i386)
–  DMA capability: some device driver need to use this memory

for I/O
•  ZONE_NORMAL

–  16M-896M (i386)
–  Normal memory direct mapped by kernel

•  ZONE_HIGHMEM
–  >896M (i396)
–  Not used in 64-bit architecture

Physical Pages – Page Frame DB

free_area[0]

…
free_area[9]

zone_pgdat
zone_mem_map

List List List

struct page {
 struct list_head list;
 ...
 atomic_t count;
 unsigned long flags;
 struct list_head lru;
 …
} mem_map_t;

Managing Physical Memory
•  The page allocator allocates and frees all physical pages; it

can allocate ranges of physically-contiguous pages on
request

•  The allocator uses a buddy-heap algorithm to keep track of
available physical pages
–  Each allocatable memory region is paired with an adjacent

partner
–  Whenever two allocated partner regions are both freed up they

are combined to form a larger region
–  If a small memory request cannot be satisfied by allocating an

existing small free region, then a larger free region will be
subdivided into two partners to satisfy the request

•  Memory allocations in the Linux kernel occur either statically
(drivers reserve a contiguous area of memory during system
boot time) or dynamically (via the page allocator)

•  Also uses slab allocator for kernel memory

3/3/09

4

Page Allocation
•  Contiguous and non-contiguous allocation
•  The Buddy System Algorithm

–  Pages are allocated in blocks which are powers of 2 in size
(1, 2, 4, 8, 16, 32, 64, 128, 256, 512 pages)

–  Each size with its own free list (called free area)
–  De-allocation: if the adjacent buddy block is also free,

combine to form a new free block for the next size block of
pages

•  Data structure: free_area_t

Splitting of Memory in a Buddy Heap

Virtual Memory (Cont.)
•  The Linux kernel reserves a constant, architecture-

dependent region of the virtual address space of
every process for its own internal use

•  This kernel virtual-memory area contains two regions:
–  A static area that contains page table references to every

available physical page of memory in the system, so that
there is a simple translation from physical to virtual
addresses when running kernel code

–  The reminder of the reserved section is not reserved for any
specific purpose; its page-table entries can be modified to
point to any other areas of memory

3/3/09

5

vm_next

vm_next

Linux Organizes VM as Collection
 of “Areas”

task_struct
mm_struct
pgd mm

mmap

vm_area_struct
vm_end

vm_prot
vm_start

vm_end

vm_prot
vm_start

vm_end

vm_prot

vm_next

vm_start

process virtual memory

text

data

shared libraries

0

0x08048000

0x0804a020

0x40000000

–  pgd:
•  Page directory address

–  vm_prot:
•  Read/write permissions

for this area
–  vm_flags

•  Shared with other
processes or private to
this process

vm_flags

vm_flags

vm_flags

‘mm_struct’
•  Each application-process uses a different mapping of

physical memory regions into the Pentium’s “virtual”
address-space, so one process can’t access memory
owned by another process (i.e., private regions)

•  The OS switches these mapping when it suspends
one process to resume another

•  Each task’s mapping is in its ‘task_struct’

Page Fault
•  Exception handler

–  Raised by address translation (hardware)
–  Call do_page_fault() to handle this interrupt

•  do_page_fault()
–  Architecture-specific
–  i386: arch/i386/mm/fault.c
–  Find a page frame in the physical memory
–  Load the missing page in
–  Update the page tables

Linux Page Fault Handling

vm_area_struct
vm_end

r/o

vm_next

vm_start

vm_end

r/w

vm_next

vm_start

vm_end

r/o

vm_next

vm_start

process virtual memory

text

data

shared libraries

0

•  Is the VA legal?
–  I.e. is it in an area

defined by a
vm_area_struct?

–  If not then signal
segmentation violation
(e.g. (1))

•  Is the operation
legal?
–  I.e., can the process

read/write this area?
–  If not then signal

protection violation
(e.g., (2))

•  If OK, handle fault
–  E.g., (3)

write

read

read
1

2

3

3/3/09

6

do_page_fault()
 …
 vma = find_vma(mm, address);
 if (!vma)
 goto bad_area;
 if (vma->vm_start <= address)
 goto good_area;
 …
 good_area:
 …
 handle_mm_fault(mm, vma, address, write);
 …
 bad_area:
 …
 force_sig_info(SIGSEGV, &info, tsk);
 …

handle_mm_fault()
 …
 pgd = pgd_offset(mm, address);
 pmd = pmd_alloc(mm, pgd, address);
 if (pmd) {
 pte = pte_alloc(mm, pmd, address);
 if (pte)
 return handle_pte_fault(...);
 }
 …
 handle_pte_fault():

–  do_no_page() if pte entry is all-zero
–  Do_swap_page() if pte entry is none-zero

Contiguous vs Non-Contiguous Noncontiguous Memory
•  Noncontiguous page frames in contiguous linear

address
–  Not all virtual memory maps to the contiguous page frames
–  Make sense for infrequent use

•  To allocate (in include/linux/vmalloc.h)
–  void *vmalloc(unsigned long size)

•  To release
–  void vfree(const void * addr)

3/3/09

7

Backing Store
•  Each VM area can be mapped to a file (in secondary

memory)
•  Explicit memory mapping through system call

–  mmap(), munmap(), mremap()

•  Implicit mmaping
–  Code segment (loading from an excutable binary file)
–  Swapping (mapped to the swap file)

VM Area: Backing Store
•  Data structure (in include/linux/mm.h)

struct vm_area_struct {

 unsigned long vm_pgoff; /* offset in page */
 struct file * vm_file; /* mapped file */

};

Swapping and Page Cache
•  For Pages in a Process’s User Space

–  Swap: Secondary Memory on the disk
–  Page Cache: Main Memory

•  Data Structure: 3 sets of lists
–  Active pages, usually mapped by a process’s PTE

•  active_list (in mm/page_alloc.c)
–  Inactive, unmapped, clean or dirty

•  inactive_dirty_list (in mm/page_alloc.c)
–  Clean pages, unmapped (one list per zone)

•  zone_t.inactive_clean_list (in include/linux/mmzone.h)

Kernel Swap Daemon
•  Implemented as a kernel thread

–  kswapd() (in mm/vmscan.c)
–  Wake up periodically

•  Wake up more frequently if memory shortage

•  Check memory and if memory is tight
–  Age pages that have not be used
–  Move pages to inactive lists
–  Write dirty pages to disk
–  Swap pages out if necessary

3/3/09

8

More kswapd()
•  Call swap_out() to scan inactive page lists

–  Removes page reference from process’ s page table
–  Actual swapping is done independently by file I/O

•  Call refill_inactive_scan() to
–  Scan the active_list to find unused page
–  Call age_page_down() to reduce page->age count
–  If page->age is zero, move to inactive_dirty_list

•  Call page_launder() to clean dirty pages:
–  Scan inactive_dirty_list for dirty pages, write to disk
–  Move clean pages to the zone’ s inactive_clean_list

Demand Paging
•  Page frame for a VM area is not in core

–  Page frame is not allocated when VM area is created
–  Page frame can be swapped out

•  Handled by page fault

