CS 537
Section 7
Virtual memory

Michael Swift

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Quiz # 3 Answers

* Question 1: accessing other memory
+ Question 2: page tables (covered in class)
* Question 3: TLBs

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Project 2 Questions

+ I'd like to meet with every group for about 15 minutes
this week.
— Tell me about your design and plan
« Break the problem into modules
« Figure out what each module does
« Figure out the interface
— function calls in to the module
— function calls out of the module
— Write and test modules separately
« Page table
« Page replacement
— Integrate them all

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Implementing Page replacement

* How should you implement LRU
+ How should you implement 2" chance FIFO
* How should you implement Clock

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

3/3/09

Data structures

What data structures do you need?
— On every memory reference, you need to check whether a
virtual page number is in memory
< you probably want an array indexed by virtual page number
— On every memory reference, you may need to:
< update a referenced bit
« rearrange the order of an LRU list
« Where do these go?
— To remove a page, you need to look at the set of physical
page frames
« to find one to remove
— Toremove a page, you need access to the virtual page to
mark it invalid

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Modules

* What are some modules to have in your code?
— Clearly, page replacement policies should be separate
modules
* What goes in the common code?
— The main loop
— Handling a hit in the page table
— Common data structures
« Inserting a virtual->physical mapping
« removing a virtual->physical mapping

©2004-2007 Ed Lazowska, Hank Levy, Andrea and 6

Remzi Arpaci-Dussea, Michael Swift

Linux Virtual Memory

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Memory Management

+ Linux’s physical memory-management system deals
with allocating and freeing pages, groups of pages,
and small blocks of memory

* It has additional mechanisms for handling virtual
memory, memory mapped into the address space of
running processes

» Splits memory into 3 different zones due to hardware
characteristics

3/3/09

Relationship of Zones and Physical Addresses

on 80x86
zone physical memory
ZONE_DMA <16 MB
ZONE_NORMAL 16 .. 896 MB
ZONE_HIGHMEM > 896 MB

3 Zones
+ ZONE_DMA
— 0-16M (i386)
— DMA capability: some device driver need to use this memory
for 1/0

+ ZONE_NORMAL

— 16M-896M (i386)

— Normal memory direct mapped by kernel
+ ZONE_HIGHMEM

— >896M (i396)

— Not used in 64-bit architecture

Physical Pages — Page Frame DB

List List List

I

struct page {
struct list_head list;

free_areal[0]

atomic_t count;

free_area[9] unsigned long flags;

struct list_head Iru;

zone_pgdat

zone_mem_map [} mem_map_t;

Managing Physical Memory

« The page allocator allocates and frees all physical pages; it
can allocate ranges of physically-contiguous pages on
request

« The allocator uses a buddy-heap algorithm to keep track of
available physical pages

— Each allocatable memory region is paired with an adjacent
partner

— Whenever two allocated partner regions are both freed up they
are combined to form a larger region

— If a small memory request cannot be satisfied by allocating an
existing small free region, then a larger free region will be
subdivided into two partners to satisfy the request

« Memory allocations in the Linux kernel occur either statically
(drivers reserve a contiguous area of memory during system
boot time) or dynamically (via the page allocator)

< Also uses slab allocator for kernel memory

3/3/09

Page Allocation

Contiguous and non-contiguous allocation

The Buddy System Algorithm
— Pages are allocated in blocks which are powers of 2 in size
(1,2, 4,8, 16, 32, 64, 128, 256, 512 pages)
— Each size with its own free list (called free area)

— De-allocation: if the adjacent buddy block is also free,
combine to form a new free block for the next size block of
pages

Data structure: free_area_t

Splitting of Memory in a Buddy Heap

8KB 8KB
16KB
4KB
8KB
4KB

Virtual Memory (Cont.)

The Linux kernel reserves a constant, architecture-
dependent region of the virtual address space of
every process for its own internal use

This kernel virtual-memory area contains two regions:

— A static area that contains page table references to every
available physical page of memory in the system, so that
there is a simple translation from physical to virtual
addresses when running kernel code

— The reminder of the reserved section is not reserved for any
specific purpose; its page-table entries can be modified to
point to any other areas of memory

Kernel virtual address space

mapping

0 896 MB
Main
memory
e \\\\\The nth page of the S
. kernal address space ~ ~_
~ " x_maps to the nth page ™.
\\\\f\rame of main i <
X memory "
Virtual
memory
896MB J

0 3GB
|
|
|
I

Kernel

address
space

4GB

3/3/09

Linux Organizes VM as Collection

task_struct

mm_struct vm_end
mm__ —[pgd vm_start
vm_prot
mma vm_flags
E vm_next
vm_end
— pgd: vm_start N
« Page directory address V: g:)ts \
\ g
— vm_prot:
« Read/write permissions vm_next
for this area
— vm_flags VI GG
« Shared with other vm_start
processes or private to vm_prot
this process vm_flags
Lvm_next |

of “Areas”

vm_area_struct

process virtual memory

shared libraries

data

text

0x40000000

0x0804a020

0x08048000

‘mm_struct’

+ Each application-process uses a different mapping of

physical memory regions into the Pentium’s “virtual”
address-space, SO one process can’t access memory
owned by another process (i.e., private regions)

The OS switches these mapping when it suspends
one process to resume another

+ Each task’s mapping is in its ‘task_struct’

Page Fault

» Exception handler
— Raised by address translation (hardware)
— Call do_page_fault() to handle this interrupt

+ do_page_fault()

— Architecture-specific

— i386: arch/i386/mm/fault.c
— Find a page frame in the physical memory
— Load the missing page in
— Update the page tables

vm_area_struct

Linux Page Fault Handling

process virtual memory

* Isthe VA legal?

— le.isitin an area

% defined by a
% vm_area_struct?
shared libraries — If not then signal
T il segmentation violation
o I— (e.g. (1))
vm start [(@ - Isthe operation
riw \ data l—tead legal?
vm_next @) — l.e., can the process
_ / ot wite read/write this area?
% X — If not then signal
r/o protection violation
vm_next (e'g” (2))
0 * If OK, handle fault
- Eg. (3)

3/3/09

do_page_fault()

vma = find_vma(mm, address);
if ('vma)
goto bad_area;
if (vma->vm_start <= address)
goto good_area;
good_area:
handle_mm_fault(mm, vma, address, write);

bad_area:

force_sig_info(SIGSEGV, &info, tsk);

handle_mm_fault()

pgd = pgd_offset(mm, address);
pmd = pmd_alloc(mm, pgd, address);

if (pmd) {
pte = pte_alloc(mm, pmd, address);
if (pte)
return handle_pte_fault(...);
}

handle_pte_fault():
— do_no_page() if pte entry is all-zero
— Do_swap_page() if pte entry is none-zero

Contiguous vs Non-Contiguous

Kernel address space

[[T 1] |

PAGE_OFFSET Ox(ffffft

Memory mapping
A A 14 A B |
LI [T

Physical memory

Noncontiguous Memory

* Noncontiguous page frames in contiguous linear
address
— Not all virtual memory maps to the contiguous page frames
— Make sense for infrequent use
» To allocate (in include/linux/vmalloc.h)
— void *vmalloc(unsigned long size)
+ Torelease
— void vfree(const void * addr)

3/3/09

Backing Store

« Each VM area can be mapped to a file (in secondary
memory)
» Explicit memory mapping through system call
— mmap(), munmap(), mremap()
* Implicit mmaping
— Code segment (loading from an excutable binary file)
— Swapping (mapped to the swap file)

VM Area: Backing Store

+ Data structure (in include/linux/mm.h)
struct vm_area_struct {

unsigned long vm_pgoff; /* offset in page */
struct file * vm_file; /* mapped file */

Swapping and Page Cache

» For Pages in a Process’s User Space
— Swap: Secondary Memory on the disk
— Page Cache: Main Memory

» Data Structure: 3 sets of lists
— Active pages, usually mapped by a process’s PTE
« active_list (in mm/page_alloc.c)
— Inactive, unmapped, clean or dirty
« inactive_dirty_list (in mm/page_alloc.c)
— Clean pages, unmapped (one list per zone)
« zone_t.inactive_clean_list (in include/linux/mmzone.h)

Kernel Swap Daemon

* Implemented as a kernel thread

— kswapd() (in mm/vmscan.c)

— Wake up periodically

« Wake up more frequently if memory shortage

* Check memory and if memory is tight

— Age pages that have not be used

— Move pages to inactive lists

— Write dirty pages to disk

— Swap pages out if necessary

3/3/09

More kswapd()

» Call swap_out() to scan inactive page lists
— Removes page reference from process’ s page table
— Actual swapping is done independently by file /0O

+ Call refill_inactive_scan() to
— Scan the active_list to find unused page
— Call age_page_down() to reduce page->age count
— If page->age is zero, move to inactive_dirty_list

+ Call page_launder() to clean dirty pages:
— Scan inactive_dirty_list for dirty pages, write to disk
— Move clean pages to the zone’ s inactive_clean_list

Demand Paging

» Page frame for a VM area is not in core
— Page frame is not allocated when VM area is created
— Page frame can be swapped out

» Handled by page fault

3/3/09

