
4/30/09

1

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

1

CS 537
Section 10

Programming Assignment 4

Michael Swift

pthread locking
•  pthread locks are called mutexes.
•  usage:

–  pthread_mutex_t mutex;
–  pthread_mutex_init(&mutex, NULL);
–  pthread_mutex_lock(&mutex);
–  pthread_mutex_unlock(&mutex);
–  pthread_mutex_destroy(&mutex);

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

2

4/30/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

3

Model for representing protection
•  Two different ways of thinking about it:

–  access control lists (ACLs)
•  for each object, keep list of principals and principals’ allowed actions
•  Like a guest list (check identity of caller on each access)

–  capabilities
•  for each principal, keep list of objects and principal’s allowed actions
•  Like a key (something you present to open a door)

•  Both can be represented with the following matrix:

/etc/passwd /home/swift /home/guest

root rw rw rw

swift r rw r

guest r
principals

objects

ACL

capability

4/30/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

4

ACLs vs. Capabilities
•  Capabilities are easy to transfer

–  they are like keys: can hand them off
–  they make sharing easy

•  ACLs are easier to manage
–  object-centric, easy to grant and revoke

•  to revoke capability, need to keep track of principals that have it
•  hard to do, given that principals can hand off capabilities

•  ACLs grow large when object is heavily shared
–  can simplify by using “groups”

•  put users in groups, put groups in ACLs
•  you are could be in the “cs537-students” group

–  additional benefit
•  change group membership, affects ALL objects that have this group in

its ACL

4/30/09

2

4/30/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

5

Protection in the Unix FS
•  Objects: individual files
•  Principals: owner/group/world
•  Actions: read/write/execute or lookup
•  Rule: once a principal matches, no futher access
•  Example:

–  /usr: root root rwxr-xr-x
•  owner: root has rwx access (read dir, write dir = add/delete files, x =

lookup dir entries)
•  group: root has r-x (read dir, lookup entries)
•  other: same as group

–  ~swift/private: swift os-research rwx-----x
•  owner(swift) has compete access
•  group (drivers) has no access
•  Everyone else has lookup access(x)

•  This is pretty simple and rigid, but it has proven to be about what we
can handle!

Protection in Windows
•  Every file/dir has an ACL

•  Every ACL is made up of
Access Control Entries (ACEs)

•  ACEs grant or deny access to a
user or group

•  Every process has a token
•  User ID
•  list of group IDs
•  Privileges to bypass ACLs
•  e.g. set time, backup files

•  When opening a file, specify
desired access

•  system walks ACL, checks
each entry against token until
desired access granted, or a
single bit is denied or end is
reached

4/30/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

6

A:user:access
D:user:access
D:group:access

ACL header
type/version
size

User ID:swift

Group IDs: g1, g2

Privileges: p1, p2

Token Header

