CS 537 Section 11 Large Scale Systems

Michael Swift

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift 4

Google Design Philosophy

Truckloads of low-cost machines

- · Workloads are large and easily parallelized
- · Care about perf/\$, not absolute machine perf
- · Even reliable hardware fails at our scale
- Why?
 - At large scale (100,000+ machines), things will fail and software will handle it
 - Workload is independent requests; can spread across many independent machines

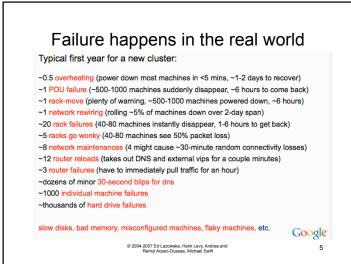

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea. Michael Swift 3

Recent Trends

- · Computing is moving away from the desktop
 - To mobile device: smart phones
 - To data centers: cloud computing
- Why?
 - Cheap communication
 - · Enables a smart phone to be useful
 - · Enables low-latency communication with a data center
 - Cheap computation & storage
 - · Can carry enough power with you to do interesting things
 - · Can build a data center to do interesting things for many people

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift 2

Effects of Google's HW philosophy



- Software must tolerate failure
- Application's particular machine should not matter
- No special machines just 2 or 3 flavors

Google - 1999

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and

4

Software Architecture GFS master Cluster scheduling master Chubby Lock service Machine 2 Machine N Machine 1 BigTable app1 BigTable BigTable master server User app2 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea. Michael Swift 7

Google Software Design

- · Linux kernel everywhere (an old version)
- · Infrastructure services shared by all applications
 - Google File System (GFS) for sharing data
 - MapReduce programming model for accessing data
 - Chubby Lock Service for synchronizing access to data
 - BigTable for structured data, such as database tables
- · Services hierarchically decomposed:
 - Small number of masters for complex synchronization
 - Workers for distributing load across many machines

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift

6

Example: MapReduce

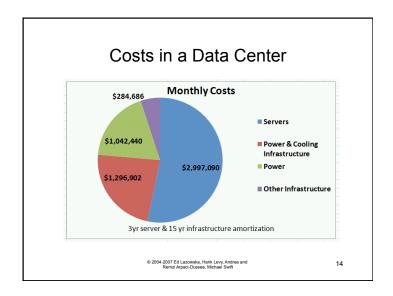
- · Google's batch processing tool of choice
- Users write two functions:
 - Map: Produces (key, value) pairs from input
 - Reduce: Merges (key, value) pairs from Map
- · Library handles data transfer and failures
- · Used everywhere: Earth, News, Analytics, Search Quality, Indexing, ...

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift

Example: Document Indexing

- Input: Set of documents D₁, ..., D_N
- Map
 - Parse document D into terms T₁, ..., T_N
 - Produces (key, value) pairs
 - (T₁, D), ..., (T_N, D)
- Reduce
 - Receives list of (key, value) pairs for term T
 - (T, D₁), ..., (T, D_N)
 - Emits single (key, value) pair
 - (T, (D₁, ..., D_N))

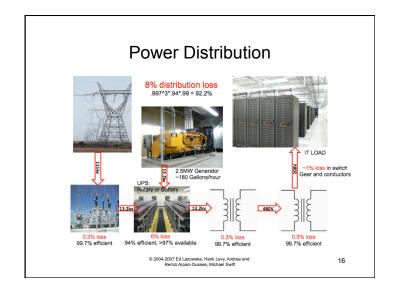
© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea, Michael Swift


Execution **GFS** map map k1:v k3:v Shuffle and Sort GFS © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea. Michael Swift 11

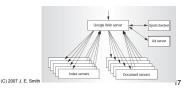
Hardware Design: Data Centers © 2004-2007 Ed Lazowska, Hank Levy, Andrea and 12

Data Centers

- Buildings full of machines (thousands of identical machines)
- Machines stored in racks, that provide power, cooling (if water based), network
- State of the art trend: build data centers from shipping containers
- Key Concern: Power efficiency
 - Power usage is substantial part of cost
 - Cooling is a big part of power: must cool off every watt spent computing
 - Often located near cheap power (hydroelectric) or cheap cooling (cold weather) a Lazowska, Hank Levy, Andres and Thomas Americh hases Michael Swift


13

Where Does Power Go?


- Assuming a pretty good data center with PUE ~1.7
 - Each watt to server loses ~0.7W to power distribution losses & cooling
- Power losses are easier to track than cooling:
 - Power transmission & switching losses: 8%
 - · Detailed power distribution losses on next slide
 - Cooling losses remainder:100-(59+8) => 33%
- · Data center power consumption:
 - IT load (servers): 1/1.7=> 59%
 - Distribution Losses: 8%
 - Mechanical load(cooling): 33%

Power

- Power is a very big issue
 - Google servers 400 watts/ft²
 - High end servers 700 watts/ft²
 - Typical commercial data center 70-150 watts/ft² ⇒ special cooling or additional space, anyway using high-end servers would make matters worse

Shipping Container as Data Center

- · Data Center Module
- Module - Contains network gear, compute, storage, & cool
 - Just plug in power, network, & chilled water
- · Increased cooling efficiency
 - Variable water & air flow
 - Better air flow management (higher delta-T)
 - 80% air handling power reductions (Rackable Syste
- · Bring your own data center shell
 - Just central networking, power, cooling, security & adm center
 - Can be stacked 3 to 5 high
 - Less regulatory issues (e.g. no building permit)
 - Avoids (for now) building floor space taxes
- · Move resources closer to customer (CDN mini-ce
- · Distributed, incremental fast built mini-center

1/21/2007

Inside Google's Data centers

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi Arpaci-Dussea. Michael Swift

19

Inside a Container

Manufacturing & H/W Admin.

- Savings

 Factory racking, stacking & packing much more effice - Robotics and/or inexpensive labor
- · Avoid layers of packaging
 - Systems->packing box->pallet->container
 - Materials cost and wastage and labor at customer site
- Data Center power & cooling expensive consulting contracts
 - Data centers are still custom crafted rather than prefab units
 - Move skill set to module manufacturer who designs power & cooling once
 - Installation design to meet module power, network, & cooling specs
- More space efficient
 - Power densities in excess of 1250 W/sq ft
 - Rooftop or parking lot installation acceptable (with secur
 - Stack 3 to 5 high
- · Service-Free
 - H/W admin contracts can exceed 25% of systems cost
 - Sufficient redundancy that it just degrades over time
 - · At end of service, return for remanufacture & recycli
 - 20% to 50% of systems outages caused by Admin error (A. Brown & D. Patterson)

