
Course Introduction

CS 537 – Spring 2013
Operating Systems

Michael Swift

1/21/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

2

Today’s agenda

•  Administrivia
–  course overview

•  course staff
•  general structure

•  What is an operating system?
•  History

1/21/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

3

Course overview

•  Everything you need to know will be on the course web
page:

http://www.cs.wisc.edu/~cs537-2

–  Schedule
–  Readings
–  Homeworks
–  Writings
–  Projects

1/21/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

4

•  But to tide you over for the next hour …
–  course staff

•  Mike Swift
•  TBA

–  general structure
•  Lectures do introduce material
•  Text book readings help further understanding for assignments
•  sections will focus on C programming, the projects, quizzes,

writing, and homework
•  we really want to encourage discussion, both in class and in

section

1/21/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

5

Workload

•  This class has a significant amount of work

–  No midterm, Optional Final
–  5-6 Programming projects (some individual, some group)
–  7-8 Quizzes in section
–  Some homeworks (~ 6)
–  Dates are not flexible

•  If you’re going to drop this course
–  please do it soon!

Programming

•  All programming is in C
–  All operating systems (almost) are written in C
–  Most high-performance code is written in C

•  You will get an opportunity to learn about
–  revision control for group projects
–  makefiles to automate compilation of larger programs
–  debugging

•  Example:

1/21/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

#include <stdio.h>!

int l;int main(int o,char **O,!

int I){char c,*D=O[1];if(o>0){!

for(l=0;D[l];D[l!

++]-=10){D [l++]-=120;D[l]-=!

110;while (!main(0,O,l))D[l]!

+= 20; putchar((D[l]+1032)!

/20) ;}putchar(10);}else{!

c=o+ (D[I]+82)%10-(I>l/2)*!

(D[I-l+I]+72)/10-9;D[I]+=I<0?0!

:!(o=main(c/10,O,I-1))*((c+999!

)%10-(D[I]+92)%10);}return o;}!

Computers

•  All programming projects will be graded by running
them on a CSL workstation
–  It is fine to do the projects on your own machine
–  In general they can be done on MacOS or Windows (with

CygWin) as well
–  It is your responsibility to make sure your code works on a

CSL machine before turning it in.

•  There are many computer labs on the 1st floor for
your use (1350-mumble, 1351-king,1370-adelie)

•  If you have not used Unix, please attend the CSL
Linux orientation next week
–  Signs around the building say when/where

1/21/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

7

1/21/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

8

Grades

•  Exams: 25%
•  Final is optional

•  Programming: 50 %
•  Quizzes: 35%

–  I will drop your lowest score
•  Homeworks and class participation: 15%

1/21/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

9

Readings

•  Textbook: Operating Systems: Three Easy Pieces
•  Readings will be assigned to cover material from lecture
•  You can do readings before or after lecture, based on your

learning style
•  … But most helpful before lecture
•  … Very helpful before quizzes

Quizzes

•  Quizzes are held at the beginning of the discussion
section
–  Don’t miss them and don’t be late
–  They take about 15 minutes

•  The questions are similar in difficulty to the homework
questions

1/21/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

10

Course Content

•  In this class we will learn:
–  what are the major components of most OS’s?
–  how are the components structured?
–  what are the most important (common?) interfaces?
–  what policies are typically used in an OS?
–  what algorithms are used to implement policies?

•  Philosophy
–  you may not ever build an OS
–  but as a computer scientist or computer engineer you need

to understand the foundations
–  most importantly, operating systems exemplify the sorts of

engineering design tradeoffs that you’ll need to make
throughout your careers – compromises among and within
cost, performance, functionality, complexity, schedule …

1/21/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

11

1/21/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

12

What is an Operating System?

•  An operating system (OS) is:
–  a software layer to abstract away and manage details of

hardware resources
–  a set of utilities to simplify application development

–  “all the code you didn’t write” in order to implement your
application

Applications

OS

Hardware

1/21/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

13

The OS and hardware

•  An OS mediates programs’ access to hardware
resources
–  Computation (CPU)
–  Volatile storage (memory) and persistent storage (disk, etc.)
–  Network communications (TCP/IP stacks, ethernet cards, etc.)
–  Input/output devices (keyboard, display, sound card, etc.)

•  The OS abstracts hardware into logical resources and
well-defined interfaces to those resources
–  processes (CPU, memory)
–  files (disk)

•  programs (sequences of instructions)
–  sockets (network)

1/21/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

14

Why bother with an OS?
•  Application benefits

–  programming simplicity
•  see high-level abstractions (files) instead of low-level hardware

details (device registers)
•  abstractions are reusable across many programs

–  portability (across machine configurations or architectures)
•  device independence: 3Com card or Intel card?

•  User benefits
–  safety

•  program “sees” own virtual machine, thinks it owns computer
•  OS protects programs from each other
•  OS fairly multiplexes resources across programs

–  efficiency (cost and speed)
•  share one computer across many users
•  concurrent execution of multiple programs

1/21/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

15

What Functionality belongs in OS?

•  No single right answer
–  Desired functionality depends on outside factors
–  OS must adapt to both user expectations and technology

changes
•  Change abstractions provided to users
•  Change algorithms to implement those abstractions
•  Change low-level implementation to deal with hardware

•  Current operating systems driven by evolution

Major Themes in OS

•  Virtualization
–  Taking physical hardware and making a software version

that is sharable, easier to use, more powerful
–  Examples:

•  CPU: we can run two programs at the same time
•  Memory: programs see a linear range of addresses but

underlying DRAM is shared in 4kb chunks
•  Disk: we use files/folders, disk internally has blocks

•  Concurrency
–  Maintaining correctness when many things happen at once
–  Examples:

•  Code on 2 CPUs try to increment the same variable

•  Persistence
–  Keep data safe across system crashes/reboots

1/21/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

16

