Course Introduction

CS 537 — Spring 2013
Operating Systems
Michael Swift



Today's agenda

 Administrivia
— course overview

 course staff
* general structure

« What is an operating system?
* History

1/21 /1 3 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift



Course overview

* Everything you need to know will be on the course web
page:

http://www.cs.wisc.edu/~cs537-2

— Schedule
— Readings
— Homeworks
— Writings

— Projects

1/21 /1 3 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift



« But to tide you over for the next hour ...

— course staff
« Mike Swift
« TBA

— general structure
» Lectures do introduce material
« Text book readings help further understanding for assignments
 sections will focus on C programming, the projects, quizzes,
writing, and homework

« we really want to encourage discussion, both in class and in
section

1/21 /1 3 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift



Workload

* This class has a significant amount of work
— No midterm, Optional Final
— 5-6 Programming projects (some individual, some group)
— 7-8 Quizzes in section
— Some homeworks (~ 6)
— Dates are not flexible

 If you're going to drop this course
— please do it soon!

1/21 /1 3 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift



Programming

* All programmingisin C
— All operating systems (almost) are written in C
— Most high-performance code is written in C

* You will get an opportunity to learn about
— revision control for group projects
— makefiles to automate compilation of larger programs

— debugging
 Example:

1/21/13

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

#include <stdio.h>

int 1l;int main(int o,char **O,
int I){char c,*D=0[1];if(0>0){
for(1=0;D[1 1;D[1
++]-=10){D  [l++]-=120;D[1]-=
110;while (!main(0,0,1))D[1]

+= 20; putchar((D[1]+1032)
/20 ) ; }putchar(10); }else{
c=o+ (D[I]+82)%10-(I>1/2)*

(D[I-1+I1+72)/10-9;D[I]+=I<020
:!1(o=main(c/10,0,I-1))*((c+999

)$10-(D[I]+92)%10); }return o;}



Computers

* All programming projects will be graded by running
them on a CSL workstation

— It is fine to do the projects on your own machine

— In general they can be done on MacOS or Windows (with
CygWin) as well

— It is your responsibility to make sure your code works on a
CSL machine before turning it in.

« There are many computer labs on the 15t floor for
your use (1350-mumble, 1351-king,1370-adelie)

 If you have not used Unix, please attend the CSL
Linux orientation next week

— Signs around the building say when/where

1/21 /1 3 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift



Grades

Exams: 25%

* Final is optional

Programming: 50 %

Quizzes: 35%

— | will drop your lowest score

Homeworks and class participation: 15%

1/21 /1 3 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift



Readings

« Textbook:
« Readings will be assigned to cover material from lecture

* You can do readings before or after lecture, based on your
learning style

« ... But most helpful before lecture
* ... Very helpful before quizzes

1/21 /1 3 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift



Quizzes

* Quizzes are held at the beginning of the discussion
section
— Don’t miss them and don'’t be late
— They take about 15 minutes

« The questions are similar in difficulty to the homework
guestions

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
1/21 /1 3 Arpaci-Dussea, Michael Swift 10



Course Content

* |n this class we will learn:

what are the major components of most OS’s?

how are the components structured?

what are the most important (common?) interfaces?
what policies are typically used in an OS?

what algorithms are used to implement policies?

* Philosophy

1/21/13

you may not ever build an OS

but as a computer scientist or computer engineer you need
to understand the foundations

most importantly, operating systems exemplify the sorts of
engineering design tradeoffs that you'll need to make
throughout your careers — compromises among and within
cost, performance, functionality, complexity, schedule ...

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi 11
Arpaci-Dussea, Michael Swift



What is an Operating System?

* An operating system (OS) is:
— a software layer to abstract away and manage details of
hardware resources

— a set of utilities to simplify application development

Applications
OS

Hardware

— “all the code you didn’t write” in order to implement your
application

1/21 /1 3 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
Arpaci-Dussea, Michael Swift

12



The OS and hardware

* An OS mediates programs’ access to hardware
resources
— Computation (CPU)
— Volatile storage (memory) and persistent storage (disk, etc.)
— Network communications (TCP/IP stacks, ethernet cards, etc.)
— Input/output devices (keyboard, display, sound card, etc.)

« The OS abstracts hardware into logical resources and
well-defined interfaces to those resources
— processes (CPU, memory)
— files (disk)
e programs (sequences of instructions)
— sockets (network)

1/21 /1 3 © 2004-2007 Ed Laz9wska, Hanll( Levy, An.drea and Remzi 1 3
Arpaci-Dussea, Michael Swift



Why bother with an OS?

* Application benefits
— programming simplicity
» see high-level abstractions (files) instead of low-level hardware
details (device registers)
« abstractions are reusable across many programs
— portability (across machine configurations or architectures)
» device independence: 3Com card or Intel card?

 User benefits

— safety
» program “sees” own virtual machine, thinks it owns computer
* OS protects programs from each other
» OS fairly multiplexes resources across programs
— efficiency (cost and speed)
« share one computer across many users
« concurrent execution of multiple programs

1/21 /1 3 © 2004-2007 Ed Laz9wska, Hanll( Levy, Andrea and Remzi 14
Arpaci-Dussea, Michael Swift



What Functionality belongs in OS?

* No single right answer
— Desired functionality depends on outside factors

— OS must adapt to both user expectations and technology
changes
« Change abstractions provided to users
« Change algorithms to implement those abstractions
« Change low-level implementation to deal with hardware

« Current operating systems driven by evolution

1/21 /1 3 © 2004-2007 Ed Laz9wska, Hanll( Levy, Anldrea and Remzi 1 5
Arpaci-Dussea, Michael Swift



Major Themes in OS

* Virtualization

— Taking physical hardware and making a software version
that is sharable, easier to use, more powerful

— Examples:
« CPU: we can run two programs at the same time

« Memory: programs see a linear range of addresses but
underlying DRAM is shared in 4kb chunks

« Disk: we use files/folders, disk internally has blocks
« Concurrency

— Maintaining correctness when many things happen at once
— Examples:
« Code on 2 CPUs try to increment the same variable

* Persistence
— Keep data safe across system crashes/reboots

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and Remzi
1/21 /1 3 Arpaci-Dussea, Michael Swift 16



