CS 537
Section 2: More C

Michael Swift

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Homework

« Homework 1 is on moodle
* Due next Tuesday at start of class

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Project 1: Shell

Your next assignment is to create a shell

It is basically a loop:
— While (! Done)

« Read input
« Parse input
 Execute commands

Extra pieces:
— Running programs in parallel
— Redirecting output of one program to to a file

Assignment is up on web page, due in 2 weeks

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

File Descriptors

* Processes have a list of open files — a “file descriptor
table” as part of the PCB

* File system calls provide an index (a file descriptor)
into that table; table records whether descriptor is in
use and points to a data structure representing the
open file or pipe.

* On Unix, fd 0,1,2 are reserved:

— fd 0 = standard input, can only be read

— fd 1 = standard output, can only be written

— fd 2 = standard error, can only be written

— By default, stdin, stdout, stderr refer to the console/terminal

1/30/1 3 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Redirection

* In the shell, “redirection” comands change where these point:

— Basic approach: close the place stdin/stdout go, and put something
else there

« E.g.afile
« Usages:
— Pipes: command1 | command2 means send stdout of command1 to
stdin of command?2 using a pipe

— Redirecting: command1 > file means send stdout of command1 to
a file

— Redirecting: command2 < file means send the contents of a file to
stdin

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
1/30/1 3 Remzi Arpaci-Dussea, Michael Swift S

Redirection examples

— Is >file
« sends the output of Is to the file named file
— sort < file
 sorts the contents of the file and prints it to the secreen
— sort < file1 > file2
* sorts the contents of file1 and writes it to file2
« Basic approach: close the place stdin/stdout go, and
put something else there

— E.g. afile

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Implementing redirection

« To redirect output:

— close the first file descriptor, and put another one in its place:
* close(STDOUT_ FILENO);
« open(“output_file”,O_WRONLY);
— Open uses the first empty slow in the file descriptor table
— Or, more reliably:
« fd = open(“output_file”,O _WRONLY);
« dup2(fd, STDOUT_FILENO);

— DupZ2 closes the second file descriptor and replaces it with a copy
of the first

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Implementing redirection for a new

process

» Goal: replace file descriptors 0 and 1 for a new
Process:

outfile = open(outfile,’r”);

pid = fork();

if (pid == 0) {
close(FILENO_STDOUT);
dup2(outfile, FILENO_STDOUT);
exec(command);

}

1/30/1 3 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Interactive vs Batch

Interactive
— User types commands in, hits return to invoke them

Batch

— shell reads from an input file

What is the difference?

— where the commands come from
— Whether a prompt is printed
— Whether the shell prints the command line

How do you code this?

— Change which file you read from (as in P0)
* Read from a file instead of STDIN

* Or, close STDIN and redirect it to a file using code on previous
slide

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Using System Calls for I/O

You cannot use printf() or fprintf() for printing in this
project

— the c library buffers this output:

— printf(“hello”);

— fork();

— printf("world\n”);

could print:

— hello hello world

use Linux system calls:
— fd = open(filename, mode, permissions)
— write(fd, buffer, size) to write

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

How to debug your programs

* Add print statements
— Print things out all the time to see what is happening
— Problem: this is hard for big input files

« Better: use a debugger

— Allows you to stop your program while it is executing and
see the contents of all your variables
* You can say where to stop
— GUI debuggers: Visual Studio
« Shows lots of stuff in windows
— Command line debuggers: gdb
* you can enter command to see everything

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

11

Debugging

 Compile with debugging using “-g”
e gcc -g -o foo.o foo.c

 Run your program with gdb

gdb foobar

GNU gdb 6.3

<copyright omitted>

(gdb) break main

breakpoint 1 at 0x80483b0: in file foo.c, line 5
(gdb) run

Starting program: /afs/cs.wisc.edu/.../foobar
Breakpoint 1, main (argc=1, argv=0xbfe27804) at foo.c:5
5 if(argc>1){

(gdb) print argc

$1=1

(gdb)

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Memory Debugging

int main(int argc, char * argv[])

{

char * x;

x = malloc(10);
strcpy(x,argv[1l]);
printf("Hello, world: %s\n",x);
free(x);

strcpy(x,argv[2]);

printf("Bye, world: %s\n",x);

return(0);

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

13

Debugging example

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

14

What happens if you run this program?

It works correctly?
|t crashes?

o [try it]

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

15

Valgrind

[swift] gcc -g z.c
[swift] valgrind ./a.out hellothereworld
==858== Memcheck, a memory error detector.

==858== ERROR

==858==

==858== Invalid write of size 1

==858== at 0x26DBO: strcpy+160 (in /usr/local/lib/
valgrind/x86-darwin/vgpreload memcheck.so)

==858== by 0x1F84: main+50 (z.c:9)

==858== Address Ox3ec35a is © bytes after a block of size
10 alloc'd

==858== at Ox22E53: malloc+99 (in /usr/local/lib/
valgrind/x86-darwin/vgpreload memcheck.so)
==858== by Ox1F6A: main+24|(z.c:8)

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

16

Strings

Strings in C are arrays of bytes:

— char str[100];

Or pointers to memory

— char * str;

— str = (char *) malloc(100);
They are null terminated — so you need to make
space for it

— str[0] = \0’;

— strlen(str) = 0;

There are a bunch of functions for working with them:
— strlen, strcpy, strcat

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Question

« What was wrong with the code to reverse the

characters on a line?

char * reverse(char * line) {
char *tmp;
tmp = (char *) malloc(strlen(line));
for (int j=0, i = strlen(line); 1 >= 0@; i--)
tmp[j++] = line[i];
return(tmp)

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

18

String Example

#include <stdio.h>
#include <string.h>

int main(int argc, char *argv]]) {
char s[100];
strcpy(s,"hello");
strcat(s,", world");
printf("S = %s\n",s);

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and

parsing with strtok

include <string.h>

char *strtok(char str, char * sep);

the strtok() function tokenizes a string into words
— str is the string to tokenize
— sep are the characters that separate tokens, e.g., space, tab, new
line
— strtok remembers the strong after the first call

Example:

tmp = strtok(buffer,” \t\n");
while (tmp) {

cmds[num cmds] = tmp;

num cmds++;

tmp = strtok(NULL, "\n \t");

}

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and 20
Remzi Arpaci-Dussea, Michael Swift

strtok Things to Remember

« strtok() modifies the string
— It replaces the separator with a null character

— strtok() returns NULL when you get the last token of a string

— As long as the buffer you parse remains allocated, you can
store the pointers returned from strtok()

* You can use strtok() again on the strings returned

from strtok to parse with different separators
* e.g., separate a strong into commands, and then a command

into arguments

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

21

Strtok hints

* No nested loops on one buffer:
tmpcmd = strtok(buffer,”+\n”);
while (tmpcmd) {
tmp = strtok(tmpemd,” \t");
while (tmp) {
cmds[num cmds] = tmp;
num cmds++;
tmp = strtok(NULL, "\n \t");

}
tmpcemd = strtok(NULL,"\n \t");

}
 Why?

— inner strtok ovewrites outer strtok
 How do you do this?

— copy the the string

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

22

Strtok hints

Fixed version

char * lasts;
int num cmds = 0;
tmpcmd = strtok r(buffer,"+\n",&lasts);
while (tmpcmd) {

char * tmp;

char tmpbuf[MAX LEN];

strcpy (tmpbuf, tmpcmd) ;

tmp = strtok(tmpbuf," \t");

while (tmp) {

cmds[num cmds] = strdup(tmp);

num_cmds++;
tmp = strtok(NULL,"\n \t");

}
tmpcmd = strtok r(NULL,"+\n",&lasts);

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Pointers in C

Pointers are addresses
- char * ¢ = malloc(10 * sizeof(char));
— ¢ now contains the address of some memory

*” operator returns what is at an address
— *c returns the character at address c

p[n] operator returns what is at address:
— p + n * sizeof(*p) — the size of the type p points to

two dimensional arrays:
— int **p;
— p[n] = what is at p+n*sizeof(int *); call this q: a pointer to
integers
— q[m] = what is at g + m*sizeof(int); an integer

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

24

Memory Allocation

« Malloc allocates memory in blocks

— writing to locations off the end of your block may not cause a
bug
« if your block is not a multiple of 16 (or so bytes)
— But it may cause later calls to malloc/free/realloc to fail

* malloc may store a header on a block, and overwriting can
corrupt that header

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and 25
Remzi Arpaci-Dussea, Michael Swift

Rules for allocating memory

« Call malloc() for any array or structure returned from

a function with a pointer:

char * reverse(char * line) {
char tmp[100];
for (int j=0, i = strlen(line); i »>= 0@; i--)
tmp[j++] = line[i];
return(tmp)

» Better:
char * reverse(char * line) {
char *tmp;
tmp = (char *) malloc(strlen(line));
for (int j=0, i = strlen(line); i »>= 0; i--)
tmp[j++] = line[i];
return(tmp)

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

26

Rules for allocating memory

« Call malloc() for any array or structure returned from

a function with a pointer:

char * reverse(char * line) {
char *tmp;
tmp = (char *) malloc(strlen(line));
for (int j=0, i = strlen(line); 1 >= 0@; i--)
tmp[j++] = line[i];
return(tmp)

« Call free() when you are done:
char * output;
fgets(line,MAX LEN,file);
output = reverse(line);
free(output);

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and 27
Remzi Arpaci-Dussea, Michael Swift

Separate Compilation

Larger programs may have multiple files
— gcc file1.c file2.c file3.c

You can keep things simpler by compiling each one
separately

— gcc —c filel.c

— gcc —c file2.c

— gcc —c file3.c

— gcc —o program file1.o file2.o file3.0

This gets cumbersome, so you can create scripts to
do all the pieces for you, called Makefiles

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and 2 8
Remzi Arpaci-Dussea, Michael Swift

Makefiles

« Specify the commands to compile code
— in a file named “Makefile”

 Example: foo.o: foo.c

gcc -¢ -O -Wall foo.c
bar.o: bar.c

gcc -¢ -O -Wall bar.c
foobar: foo.o bar.o

gcc -o foobar foo.o bar.o
default: foobar

« (General format:

target: prereq1 prereq2
<tab> command1
<tab> command2

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

