
1

2/13/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 1

CS 537
Lecture 6
Paging

Michael Swift

2

Modern technique: Paging

•  Solve the external fragmentation problem by using
fixed sized units in both physical and virtual memory

frame 0

frame 1

frame 2

frame Y

physical memory

…

page 0

page 1

page 2

page X

virtual memory

…

page 3

3

Paging
•  Translating virtual addresses

–  a virtual address has two parts: virtual page number & offset
–  virtual page number (VPN) is index into a page table
–  page table entry contains page frame number (PFN)
–  physical address is PFN::offset

•  Page tables
–  managed by the OS
–  map virtual page number (VPN) to page frame number (PFN)

•  VPN is simply an index into the page table
–  one page table entry (PTE) per page in virtual address space

•  i.e., one PTE per VPN

4

Paging

page
frame 0

page
frame 1

page
frame 2

page
frame Y

…

page
frame 3

physical memory

offset
physical address

page frame # page frame #

page table

offset
virtual address

virtual page #

2

5

Paging example
•  assume 32 bit addresses

–  assume page size is 4KB (4096 bytes, or 212 bytes)
–  VPN is 20 bits long (220 VPNs), offset is 12 bits long

•  let’s translate virtual address 0x13325328

–  VPN is 0x13325, and offset is 0x328
–  assume page table entry 0x13325 contains value 0x03004

•  page frame number is 0x03004
•  VPN 0x13325 maps to PFN 0x03004

–  physical address = PFN::offset = 0x03004328

6

Page Table Entries (PTEs)

•  PTE’s control mapping
–  the valid bit says whether or not the PTE can be used

•  says whether or not a virtual address is valid
•  it is checked each time a virtual address is used

–  the reference bit says whether the page has been accessed
•  it is set when a page has been read or written to

–  the modify bit says whether or not the page is dirty
•  it is set when a write to the page has occurred

–  the protection bits control which operations are allowed
•  read, write, execute

–  the page frame number determines the physical page
•  physical page start address = PFN << (#bits/page)

page frame number prot M R V
20 2 1 1 1

7

Paging Advantages
•  Easy to allocate physical memory

–  physical memory is allocated from free list of frames
•  to allocate a frame, just remove it from its free list

–  external fragmentation is not a problem!
•  complication for kernel contiguous physical memory allocation

–  many lists, each keeps track of free regions of particular size
–  regions’ sizes are multiples of page sizes
–  “buddy algorithm”

•  Easy to “page out” chunks of programs
–  all chunks are the same size (page size)
–  use valid bit to detect references to “paged-out” pages
–  also, page sizes are usually chosen to be convenient

multiples of disk block sizes

8

Paging Disadvantages
•  Can still have internal fragmentation

–  process may not use memory in exact multiples of pages
•  Memory reference overhead

–  2 references per address lookup (page table, then memory)
–  solution: use a hardware cache to absorb page table lookups

•  translation lookaside buffer (TLB) – next class
•  Memory required to hold page tables can be large

–  need one PTE per page in virtual address space
–  32 bit AS with 4KB pages = 220 PTEs = 1,048,576 PTEs
–  4 bytes/PTE = 4MB per page table

•  OS’s typically have separate page tables per process
•  25 processes = 100MB of page tables

–  solution: page the page tables (!!!)
•  (ow, my brain hurts…more later)

3

9

Multi-level Translation

•  Problem: what if you have a sparse address space
–  e.g. out of 4GB, you use 1 MB spread out
–  need one PTE per page in virtual address space
–  32 bit AS with 4KB pages = 220 PTEs = 1,048,576 PTEs
–  4 bytes/PTE = 4MB per page table

•  What about a tree of tables?
–  Upper levels: NULL pointers for unused lower levels
–  Lowest level page: translate a range of virtual addresses, or

NULL for unmapped pages

•  Could have any number of levels
–  x86 has 2
–  x64 has 4

10

Physical
Address: Offset Physical

Page #

4KB

Example two-level page table

10 bits 10 bits 12 bits
Virtual

Address: Offset Virtual
P2 index

Virtual
P1 index

4 bytes

PageTablePtr

•  Tree of Page Tables
•  Tables fixed size (1024 entries)

–  On context-switch: save single PageTablePtr
register

•  Valid bits on Page Table Entries
–  Don’t need every 2nd-level table
–  Even when exist, 2nd-level tables can reside

on disk if not in use
4 bytes

11

Multi-level Translation Analysis

•  Pros:
–  Only need to allocate as many page table entries as we

need for application
•  In other wards, sparse address spaces are easy

–  Easy memory allocation
–  Easy Sharing

•  Share at segment or page level (need additional reference
counting)

•  Cons:
–  One pointer per page (typically 4K – 16K pages today)
–  Two (or more, if >2 levels) lookups per reference

•  Seems very expensive!

How many levels do you need?
•  Each level of a multi-level page table resides on one page

–  Example: 4 KB pages, 3 bit addresses
•  4096 bytes / 4 bytes per PTE = 1024 PTEs/page = 210 pages of 22 KB,

or 212 bytes, 4096 KB 4MB mapped by one page of PTEs
–  Example: 8 KB pages, 64 bit addresses

•  8192 bytes / 8 bytes per PTE = 1024 PTEs/page = 210 pages of 213
bytes (8KB) = 223 bytes = 8192 KB = 8 MB

•  For 32 bit addresses with 4 kb pages:
–  offset is 12 bits
–  Each page maps 210 entries, or 10 more bits of address

•  For 64 bit addresses with 4 kb pages
–  Offset is 12 bits
–  Each page maps 29 entries, need 6 levels for the remaining 52 bits

12

4

13

•  With all previous examples (“Forward Page Tables”)
–  Size of page table is at least as large as amount of virtual memory allocated

to processes
–  Physical memory may be much less

•  Much of process space may be out on disk or not in use

•  Answer: use a hash table
–  Called an “Inverted Page Table”
–  Size is independent of virtual address space
–  Directly related to amount of physical memory
–  Very attractive option for 64-bit address spaces

•  Cons: Complexity of managing hash changes
–  Often in hardware!

Offset Virtual
Page #

Hash
Table

Offset Physical
Page #

Inverted Page Table
Choosing a page size

•  Small pages (VAX had 512 byte pages):
–  Little internal fragmentation
–  Lots of space in page tables

•  1 gb (230 bytes) takes (230/29 PTEs) at 4 (22)bytes each = 8 MB

•  Lots of space spent caching translations
–  Fast to transfer to/from disk

•  Large pages, e.g. 64 KB pages
–  Smaller page tables

•  1 GB (230 bytes) takes (230/216) at 4 bytes = 64 KB of page
tables

•  Less space in cache for translations
–  More internal fragmentation as only part of a page is used
–  Slow to copy to/from disk

2/13/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 14

2/13/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 15

Hardware and Kernel structures for
paging

•  Hardware:
–  Page table base register
–  TLB (will discuss soon)

•  Software:
–  Page table

•  Virtual --> physical or virtual --> disk mapping
–  Page frame database

•  One entry per physical page
•  Information on page, owning process

–  Swap file / Section list (will discuss under page replacement)

2/13/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 16

Page Frame Database
/*	
 * Each physical page in the system has a struct page associated with	
 * it to keep track of whatever it is we are using the page for at the	
 * moment. Note that we have no way to track which tasks are using	
 * a page.	
 */	
struct page {	
 unsigned long flags; 	 	// Atomic flags: locked,referenced,dirty,slab,disk	
 atomic_t _count; 	 	// Usage count, see below. */	
 atomic_t _mapcount; 	 	// Count of ptes mapped in mms,	

	 	 	// to show when page is mapped	
	 	 	// & limit reverse map searches.	

struct {	
 unsigned long private; 	 // Used for managing pages used in file I/O	
 struct address_space *mapping; // Used for memory mapped files	
 };	
 pgoff_t index; 	 	 // Our offset within mapping. */	
 struct list_head lru; 	 // Lock on Pageout list, active_list	
 void *virtual; 	 	 // Kernel virtual address *	
};	

5

2/13/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 17

Addressing Page Tables

•  Where are page tables stored?
–  and in which address space?

•  Possibility #1: physical memory
–  easy to address, no translation required
–  but, page tables consume memory for lifetime of VAS

•  Possibility #2: virtual memory (OS’s VAS)
–  cold (unused) page table pages can be paged out to disk
–  but, addresses page tables requires translation

•  how do we break the recursion?
–  don’t page the outer page table (called wiring)

•  Question: can the kernel be paged?

2/13/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 18

Making it all efficient

•  Original page table schemed doubled the cost of
memory lookups
–  one lookup into page table, a second to fetch the data

•  Two-level page tables triple the cost!!
–  two lookups into page table, a third to fetch the data

•  How can we make this more efficient?
–  goal: make fetching from a virtual address about as efficient

as fetching from a physical address
–  solution: use a hardware cache inside the CPU

•  cache the virtual-to-physical translations in the hardware
•  called a translation lookaside buffer (TLB)
•  TLB is managed by the memory management unit (MMU)

2/13/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 19

TLBs
•  Translation lookaside buffers

–  translates virtual page #s into PTEs (not physical addrs)
–  can be done in single machine cycle

•  TLB is implemented in hardware
–  is associative cache (many entries searched in parallel)
–  cache tags are virtual page numbers
–  cache values are PTEs
–  with PTE + offset, MMU can directly calculate the PA

•  TLBs exploit locality
–  processes only use a handful of pages at a time

•  32-128 entries in TLB is typical (64-192KB for 4kb pages)
•  can hold the “hot set” or “working set” of process

–  hit rates in the TLB are therefore really important

Example

2/13/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 20

TLB

v:0x0100, p:0x2310,R

V:0x0101, p:0x3210,RW

V:0x0202, p:0x4872,RW

cr3: 0x1010 0x00 0x8764
0x01 0x8780

0x02 0x9542

0x03 invalid

0x00 0x9248
0x01 0x4432

0x02 0x2354

0x03 0x1185

0x00 0x7983
0x01 0x6752

0x02 0x6652

0x03 invalid

translate: 0x0100 432
Translate:0x0103 743

6

2/13/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 21

TLB Organization

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

A
0
1
2
3
4
5
6
7

A B
0
1
2
3

A B C D

A B C D E L M N O P

Direct mapped

Fully associative

Two-way set associative

Four-way set associative

Tag (virtual page number) Value (page table entry)
TLB Entry

Various ways to organize a 16-entry TLB

Lookup
• Calculate index (index = tag % num_sets)
•  Search for tag within the resulting set
•  Why not use upper bits of tag value for index?

Set

In
de

x

2/13/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 22

Associativity Trade-offs
•  Higher associativity

–  Better utilization, fewer collisions
–  Slower
–  More hardware / more power

•  Lower associativity
–  Fast
–  Simple, less hardware
–  Greater chance of collisions

•  How does associativity affect OS behavior?
•  How does page size affect TLB performance?

2/13/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 23

Managing TLBs
•  Address translations are mostly handled by the TLB

–  >99% of translations, but there are TLB misses occasionally
–  in case of a miss, who places translations into the TLB?

•  Hardware (memory management unit, MMU)
–  knows where page tables are in memory

•  OS maintains them, HW access them directly
–  tables have to be in HW-defined format
–  this is how x86 works

•  Software loaded TLB (OS)
–  TLB miss faults to OS, OS finds right PTE and loads TLB
–  must be fast (but, 20-200 cycles typically)

•  CPU ISA has instructions for TLB manipulation
•  OS gets to pick the page table format
•  SPARC works like this

2/13/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 24

Managing TLBs (2)

•  OS must ensure TLB and page tables are consistent
–  when OS changes protection bits in a PTE, it needs to

invalidate the PTE if it is in the TLB (on several CPUs!)

•  What happens on a process context switch?
–  remember, each process typically has its own page tables
–  need to invalidate all the entries in TLB! (flush TLB)

•  this is a big part of why process context switches are costly
–  can you think of a hardware fix to this?

•  What happens when a mapping changes?
–  Shootdown – evict old TLB entry if it could be in use

•  When the TLB misses, and a new PTE is loaded, a
cached PTE must be evicted
–  choosing a victim PTE is called the “TLB replacement policy”
–  implemented in hardware, usually simple (e.g. LRU)

7

2/13/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 25

X86 TLB

•  TLB management shared by processor and OS
•  CPU:

–  Fills TLB on demand from page table (the OS is unaware of
TLB misses)

–  Evicts entries when a new entry must be added and no free
slots exist

•  Operating system:
–  Ensures TLB/page table consistency by flushing entries as

needed when the page tables are updated or switched (e.g.
during a context switch or swapping out)

–  TLB entries can be removed by the OS one at a time using
the INVLPG instruction or the entire TLB can be flushed at
once by writing a new entry into CR3

2/13/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 26

SPARC TLB

•  SPARC is RISC (simpler is better) CPU
•  Example of a “software-managed” TLB

–  TLB miss causes a fault, handled by OS
–  OS explicitly adds entries to TLB
–  OS is free to organize its page tables in any way it wants

because the CPU does not use them
–  E.g. Linux uses a tree like X86, Solaris uses a hash table

2/13/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 27

Minimizing Flushes

•  On SPARC, TLB misses trap to OS (SLOW)
–  We want to avoid TLB misses
–  Retain TLB contents across context switch

•  SPARC TLB entries enhanced with a context id
(also called ASID)
–  Context id allows entries with the same VPN to coexist in the

TLB (e.g. entries from different process address spaces)
–  When a process is switched back onto a processor, chances

are that some of its TLB state has been retained from the
last time it ran

•  Some TLB entries shared (OS kernel memory)
–  Mark as global
–  Context id ignored during matching

2/13/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 28

Hardware vs. Software TLBs

•  Hardware benefits:
–  TLB miss handled more quickly (without flushing pipeline)

•  Software benefits:
–  Flexibility in page table format
–  Easier support for sparse address spaces
–  Faster lookups if multi-level lookups can be avoided

•  Intel Itanium has both!
–  Plus reverse page tables

8

2/13/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 29

Why should you care?

•  Paging impacts performance
–  Managing virtual memory costs ~ 3%

•  TLB management impacts performance
–  If you address more than fits in your TLB
–  If you context switch

•  Page table layout impacts performance
–  Some architectures have natural amounts of data to share:

•  4mb on x86

User vs Kernel addresses
•  Low region of address

space is private, per-
process memory

•  High region reserved
for kernel use and has
same translations for
all processes

–  Privileged bit in PTE or
TLB marks high region
as only accessible when
in privileged mode

2/13/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 30

Kernel
Global translations

proc A proc B Addr 0x00000000

Addr 0xc0000000

Addr 0xc0000000

Per-process
translations

