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Modern technique: Paging 

•  Solve the external fragmentation problem by using 
fixed sized units in both physical and virtual memory 
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Paging 
•  Translating virtual addresses 

–  a virtual address has two parts: virtual page number & offset 
–  virtual page number (VPN) is index into a page table 
–  page table entry contains page frame number (PFN) 
–  physical address is PFN::offset 

•  Page tables 
–  managed by the OS 
–  map virtual page number (VPN) to page frame number (PFN) 

•  VPN is simply an index into the page table 
–  one page table entry (PTE) per page in virtual address space 

•  i.e., one PTE per VPN 
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Paging example 
•  assume 32 bit addresses 

–  assume page size is 4KB  (4096 bytes, or 212 bytes) 
–  VPN is 20 bits long (220 VPNs), offset is 12 bits long 

•  let’s translate virtual address 0x13325328 

–  VPN is 0x13325, and offset is 0x328 
–  assume page table entry 0x13325 contains value 0x03004 

•  page frame number is 0x03004 
•  VPN 0x13325 maps to PFN 0x03004 

–  physical address = PFN::offset = 0x03004328 
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Page Table Entries (PTEs) 

•  PTE’s control mapping 
–  the valid bit says whether or not the PTE can be used 

•  says whether or not a virtual address is valid 
•  it is checked each time a virtual address is used 

–  the reference bit says whether the page has been accessed 
•  it is set when a page has been read or written to 

–  the modify bit says whether or not the page is dirty 
•  it is set when a write to the page has occurred 

–  the protection bits control which operations are allowed 
•  read, write, execute 

–  the page frame number determines the physical page 
•  physical page start address = PFN << (#bits/page) 

page frame number prot M R V 
20 2 1 1 1 
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Paging Advantages 
•  Easy to allocate physical memory 

–  physical memory is allocated from free list of frames 
•  to allocate a frame, just remove it from its free list 

–  external fragmentation is not a problem! 
•  complication for kernel contiguous physical memory allocation 

–  many lists, each keeps track of free regions of particular size 
–  regions’ sizes are multiples of page sizes 
–  “buddy algorithm” 

•  Easy to “page out” chunks of programs 
–  all chunks are the same size (page size) 
–  use valid bit to detect references to “paged-out” pages 
–  also, page sizes are usually chosen to be convenient 

multiples of disk block sizes 
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Paging Disadvantages 
•  Can still have internal fragmentation 

–  process may not use memory in exact multiples of pages 
•  Memory reference overhead 

–  2 references per address lookup (page table, then memory) 
–  solution: use a hardware cache to absorb page table lookups 

•  translation lookaside buffer (TLB) – next class 
•  Memory required to hold page tables can be large 

–  need one PTE per page in virtual address space 
–  32 bit AS with 4KB pages = 220 PTEs = 1,048,576 PTEs 
–  4 bytes/PTE = 4MB per page table 

•  OS’s typically have separate page tables per process 
•  25 processes = 100MB of page tables 

–  solution: page the page tables (!!!) 
•  (ow, my brain hurts…more later) 
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Multi-level Translation 

•  Problem: what if you have a sparse address space 
–  e.g. out of 4GB, you use 1 MB spread out 
–  need one PTE per page in virtual address space 
–  32 bit AS with 4KB pages = 220 PTEs = 1,048,576 PTEs 
–  4 bytes/PTE = 4MB per page table 

•  What about a tree of tables? 
–  Upper levels: NULL pointers for unused lower levels 
–  Lowest level page: translate a range of virtual addresses, or 

NULL for unmapped pages 

•  Could have any number of levels 
–  x86 has 2 
–  x64 has 4 
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Physical 
Address: Offset Physical 

Page # 

4KB 

Example two-level page table 

10 bits 10 bits 12 bits 
Virtual  

Address: Offset Virtual 
P2 index 

Virtual 
P1 index 

4 bytes 

PageTablePtr 

•  Tree of Page Tables 
•  Tables fixed size (1024 entries) 

–  On context-switch: save single PageTablePtr 
register 

•  Valid bits on Page Table Entries  
–  Don’t need every 2nd-level table 
–  Even when exist, 2nd-level tables can reside 

on disk if not in use 
4 bytes 
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Multi-level Translation Analysis 

•  Pros: 
–  Only need to allocate as many page table entries as we 

need for application 
•  In other wards, sparse address spaces are easy 

–  Easy memory allocation 
–  Easy Sharing 

•  Share at segment or page level (need additional reference 
counting) 

•  Cons: 
–  One pointer per page (typically 4K – 16K pages today) 
–  Two (or more, if >2 levels) lookups per reference 

•  Seems very expensive! 

How many levels do you need? 
•  Each level of a multi-level page table resides on one page 

–  Example: 4 KB pages, 3 bit addresses 
•  4096 bytes / 4 bytes per PTE = 1024 PTEs/page = 210 pages of 22 KB, 

or  212 bytes, 4096 KB 4MB mapped by one page of PTEs 
–  Example: 8 KB pages, 64 bit addresses 

•  8192 bytes / 8 bytes per PTE = 1024 PTEs/page = 210 pages of 213 
bytes (8KB) = 223 bytes = 8192 KB = 8 MB 

•  For 32 bit addresses with 4 kb pages: 
–  offset is 12 bits 
–  Each page maps 210 entries, or 10 more bits of address 

•  For 64 bit addresses with 4 kb pages 
–  Offset is 12 bits 
–  Each page maps 29 entries, need 6 levels for the remaining 52 bits 
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•  With all previous examples (“Forward Page Tables”) 
–  Size of page table is at least as large as amount of virtual memory allocated 

to processes 
–  Physical memory may be much less 

•  Much of process space may be out on disk or not in use 

•  Answer: use a hash table 
–  Called an “Inverted Page Table” 
–  Size is independent of virtual address space 
–  Directly related to amount of physical memory 
–  Very attractive option for 64-bit address spaces 

•  Cons: Complexity of managing hash changes 
–  Often in hardware! 

Offset Virtual 
Page # 

Hash 
Table 

Offset Physical 
Page # 

Inverted Page Table 
Choosing a page size 

•  Small pages (VAX had 512 byte pages): 
–  Little internal fragmentation 
–  Lots of space in page tables 

•  1 gb (230 bytes) takes (230/29 PTEs) at 4 (22)bytes each = 8 MB 

•  Lots of space spent caching translations 
–  Fast to transfer to/from disk 

•  Large pages, e.g. 64 KB pages 
–  Smaller page tables  

•  1 GB (230 bytes) takes (230/216) at 4 bytes =  64 KB of page 
tables 

•  Less space in cache for translations 
–  More internal fragmentation as only part of a page is used 
–  Slow to copy to/from disk 
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Hardware and Kernel structures for 
paging 

•  Hardware: 
–  Page table base register 
–  TLB (will discuss soon) 

•  Software: 
–  Page table 

•  Virtual --> physical or virtual -->  disk mapping 
–  Page frame database 

•  One entry per physical page 
•  Information on page, owning process 

–  Swap file / Section list (will discuss under page replacement) 
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Page Frame Database 
/*	
 * Each physical page in the system has a struct page associated with	
 * it to keep track of whatever it is we are using the page for at the	
 * moment. Note that we have no way to track which tasks are using	
 * a page.	
 */	
struct page {	
  unsigned long flags; 	 	// Atomic flags: locked,referenced,dirty,slab,disk	
  atomic_t _count; 	 	// Usage count, see below. */	
  atomic_t _mapcount; 	 	// Count of ptes mapped in mms,	

	 	 	// to show when page is mapped	
	 	 	// & limit reverse map searches.	

struct {	
      unsigned long private; 	  // Used for managing pages used in file I/O	
      struct address_space *mapping;  // Used for memory mapped files	
   };	
   pgoff_t index; 	 	  // Our offset within mapping. */	
   struct list_head lru; 	  // Lock on Pageout list, active_list	
   void *virtual; 	 	  // Kernel virtual address *	
};	
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Addressing Page Tables 

•  Where are page tables stored? 
–  and in which address space? 

•  Possibility #1: physical memory 
–  easy to address, no translation required 
–  but, page tables consume memory for lifetime of VAS 

•  Possibility #2: virtual memory (OS’s VAS) 
–  cold (unused) page table pages can be paged out to disk 
–  but, addresses page tables requires translation 

•  how do we break the recursion? 
–  don’t page the outer page table (called wiring) 

•  Question: can the kernel be paged? 
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Making it all efficient 

•  Original page table schemed doubled the cost of 
memory lookups 
–  one lookup into page table, a second to fetch the data 

•  Two-level page tables triple the cost!! 
–  two lookups into page table, a third to fetch the data 

•  How can we make this more efficient? 
–  goal: make fetching from a virtual address about as efficient 

as fetching from a physical address 
–  solution: use a hardware cache inside the CPU 

•  cache the virtual-to-physical translations in the hardware 
•  called a translation lookaside buffer (TLB) 
•  TLB is managed by the memory management unit (MMU) 
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TLBs 
•  Translation lookaside buffers 

–  translates virtual page #s into PTEs (not physical addrs) 
–  can be done in single machine cycle 

•  TLB is implemented in hardware 
–  is associative cache (many entries searched in parallel) 
–  cache tags are virtual page numbers 
–  cache values are PTEs 
–  with PTE + offset, MMU can directly calculate the PA 

•  TLBs exploit locality 
–  processes only use a handful of pages at a time 

•  32-128 entries in TLB is typical  (64-192KB for 4kb pages) 
•  can hold the “hot set” or “working set” of process 

–  hit rates in the TLB are therefore really important 

Example 
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TLB 

v:0x0100, p:0x2310,R 

V:0x0101, p:0x3210,RW 

V:0x0202, p:0x4872,RW 

cr3: 0x1010 0x00 0x8764 
0x01 0x8780 

0x02 0x9542 

0x03 invalid 

0x00 0x9248 
0x01 0x4432 

0x02 0x2354 

0x03 0x1185 

0x00 0x7983 
0x01 0x6752 

0x02 0x6652 

0x03 invalid 

translate: 0x0100 432 
Translate:0x0103 743 
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TLB Organization 

0 
1 
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A 
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A B 
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A B C D 

A B C D E L M N O P 

Direct mapped 

Fully associative 

Two-way set associative 

Four-way set associative 

Tag (virtual page number) Value (page table entry) 
TLB Entry 

Various ways to organize a 16-entry TLB 

Lookup  
• Calculate index (index = tag % num_sets) 
•  Search for tag within the resulting set 
•  Why not use upper bits of tag value for index? 

Set 

In
de

x 
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Associativity Trade-offs 
•  Higher associativity 

–   Better utilization, fewer collisions 
–   Slower 
–   More hardware / more power 

•  Lower associativity 
–   Fast 
–   Simple, less hardware 
–   Greater chance of collisions 

•  How does associativity affect OS behavior? 
•  How does page size affect TLB performance? 
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Managing TLBs 
•  Address translations are mostly handled by the TLB 

–  >99% of translations, but there are TLB misses occasionally 
–  in case of a miss, who places translations into the TLB? 

•  Hardware (memory management unit, MMU) 
–  knows where page tables are in memory 

•  OS maintains them, HW access them directly 
–  tables have to be in HW-defined format 
–  this is how x86 works 

•  Software loaded TLB (OS) 
–  TLB miss faults to OS, OS finds right PTE and loads TLB 
–  must be fast (but, 20-200 cycles typically) 

•  CPU ISA has instructions for TLB manipulation 
•  OS gets to pick the page table format 
•  SPARC works like this 
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Managing TLBs (2) 

•  OS must ensure TLB and page tables are consistent 
–  when OS changes protection bits in a PTE, it needs to 

invalidate the PTE if it is in the TLB (on several CPUs!) 

•  What happens on a process context switch? 
–  remember, each process typically has its own page tables 
–  need to invalidate all the entries in TLB!  (flush TLB) 

•  this is a big part of why process context switches are costly 
–  can you think of a hardware fix to this? 

•  What happens when a mapping changes? 
–  Shootdown – evict old TLB entry if it could be in use 

•  When the TLB misses, and a new PTE is loaded, a 
cached PTE must be evicted 
–  choosing a victim PTE is called the “TLB replacement policy” 
–  implemented in hardware, usually simple (e.g. LRU) 
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X86 TLB 

•  TLB management shared by processor and OS 
•  CPU: 

–  Fills TLB on demand from page table (the OS is unaware of 
TLB misses) 

–  Evicts entries when a new entry must be added and no free 
slots exist 

•  Operating system: 
–  Ensures TLB/page table consistency by flushing entries as 

needed when the page tables are updated or switched (e.g. 
during a context switch or swapping out) 

–  TLB entries can be removed by the OS one at a time using 
the INVLPG instruction or the entire TLB can be flushed at 
once by writing a new entry into CR3 
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SPARC TLB 

•  SPARC is RISC (simpler is better) CPU 
•  Example of a “software-managed” TLB 

–  TLB miss causes a fault, handled by OS 
–  OS explicitly adds entries to TLB 
–  OS is free to organize its page tables in any way it wants 

because the CPU does not use them 
–  E.g. Linux uses a tree like X86, Solaris uses a hash table 
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Minimizing Flushes 

•  On SPARC, TLB misses trap to OS (SLOW)  
–  We want to avoid TLB misses 
–  Retain TLB contents across context switch 

•  SPARC TLB entries enhanced with a context id 
(also called ASID) 
–  Context id allows entries with the same VPN to coexist in the 

TLB (e.g. entries from different process address spaces) 
–  When a process is switched back onto a processor, chances 

are that some of its TLB state has been retained from the 
last time it ran 

•  Some TLB entries shared (OS kernel memory) 
–  Mark as global 
–  Context id ignored during matching 
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Hardware vs. Software TLBs 

•  Hardware benefits: 
–  TLB miss handled more quickly (without flushing pipeline) 

•  Software benefits: 
–  Flexibility in page table format 
–  Easier support for sparse address spaces 
–  Faster lookups if multi-level lookups can be avoided 

•  Intel Itanium has both! 
–  Plus reverse page tables 
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Why should you care? 

•  Paging impacts performance 
–  Managing virtual memory costs ~ 3% 

•  TLB management impacts performance 
–  If you address more than fits in your TLB 
–  If you context switch 

•  Page table layout impacts performance 
–  Some architectures have natural amounts of data to share: 

•  4mb on x86 

User vs Kernel addresses 
•  Low region of address 

space is private, per-
process memory 

•  High region reserved 
for kernel use and has 
same translations for 
all processes  

–  Privileged bit in PTE or 
TLB marks high region 
as only accessible when 
in privileged mode 
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Kernel 
Global translations 

proc A proc B Addr 0x00000000 

Addr 0xc0000000 

Addr 0xc0000000 

Per-process 
translations 


