CS 537
Lecture 8
Page Replacement Policies

Michael Swift

Evicting the best page

* The goal of the page replacement algorithm:
— reduce fault rate by selecting best victim page to
remove
— the best page to evict is one that will never be
touched again
* as process will never again fault on it
— “never” is a long time
» Belady’s proof: evicting the page that won’t be used for the
longest period of time minimizes page fault rate
* Rest of this lecture:

— survey a bunch of replacement algorithms

#1: Belady’s Algorithm

* Pick the page that won't be used for longest time
in future
— Provably optimal lowest fault rate (remember SJF?)
* Why?
— Problem: impossible to predict future
* Why is Belady’s algorithm useful?
— as a yardstick to compare other algorithms to optimal
* if Belady’s isn’t much better than yours, yours is pretty good
* Is there a lower bound?

— unfortunately, lower bound depends on workload
* but, random replacement is pretty bad

#2: FIFO

* FIFO is obvious, and simple to implement
— when you page in something, put in on tail of list
— on eviction, throw away page on head of list
* Why might this be good?
— maybe the one brought in longest ago is not being used
* Why might this be bad?
— then again, maybe it is being used
— have absolutely no information either way
* FIFO suffers from Belady’s Anomaly

— fault rate might increase when algorithm is given more
physical memory
* avery bad property

2/26/13

Example of Belady’s Anomaly

::c*l‘fests 3(2(1(0[3]2|4[3]2]1]|0]4|3pages
Newest Page |3 013 1|2 4 14 010
3 110 (3|2 |2 |2 1 (1
Oldest Page 2 110 (3 |3 |3 4 |4
: :3:ests 3(2(1]0|3[2|4[3[2[1]|0]4 |4pages
Newest Page |3 710 |0 |0 |4 |3 |2 |1 |0|4
312|111 (1]|0 |4 (3|2 (1]0
3122 (2 (1|0 |4 |3 |2 |1
Oldest Page 313 |3(2 (10|43]|2
(red italics indicates page fault)

{ank Levy

#3: Least Recently Used (LRU)

LRU uses reference information to make a more
informed replacement decision
— idea: past experience gives us a guess of future behavior
— on replacement, evict the page that hasn’t been used for
the longest amount of time
* LRU looks at the past, Belady’s wants to look at future
— when does LRU do well?
* when does it suck?
Implementation
— to be perfect, must grab a timestamp on every memory
reference and put it in the PTE (way too $$)
— so, we need an approximation...

Approximating LRU

* Many approximations, all use the PTE reference bit
— keep a counter for each page
— at some regular interval, for each page, do:
« if ref bit = 0, increment the counter (hasn’t been used)
« if ref bit = 1, zero the counter (has been used)
* regardless, zero ref bit
— the counter will contain the # of intervals since the last
reference to the page
* page with largest counter is least recently used
* Some architectures don’t have PTE reference bits
— can simulate reference bit using the valid bit to induce
faults
* hack, hack, hack

#4: LRU Clock

AKA Not Recently Used (NRU) or Second Chance
— replace page that is “old enough”
Arrange all physical page frames in a big circle (clock)
* just acircular linked list
— a “clock hand” is used to select a good LRU candidate
* sweep through the pages in circular order like a clock
« if ref bit is off, it hasn’t been used recently, we have a victim
— 50, what is minimum “age” if ref bit is off?
« if the ref bit is on, turn it off and go to next page
— arm moves quickly when pages are needed
— low overhead if have plenty of memory
if memory is large, “accuracy” of information degrades
— add more hands to fix

SHOW EXAMPLE!

2/26/13

Clock page replacement

« Circular list instead of queue
* Clock hand points to oldest page

If (Referenced==0) then

— Page is unused so replace it
» Else

— Clear Referenced

— Advance clock hand

* (very similar to second chance — queue
instead of list)

The Clock Policy: an example

n 0
page 19
‘l::eg:,l use=1 1
page 1
use =10

n 0

19
page 9 | Page
use=1|use=1

next frame page 45 2
pointer use=1

(a) State of buffer just prior to a page replacement (b) State of buffer just after the next page replacement

Another Problem: allocation of frames

* |n a multiprogramming system, we need a way to allocate
physical memory to competing processes
— what if a victim page belongs to another process?
— family of replacement algorithms that takes this into account
* Fixed space algorithms
— each process is given a limit of pages it can use
— when it reaches its limit, it replaces from its own pages
— local replacement: some process may do well, others suffer
* Variable space algorithms
— processes’ set of pages grows and shrinks dynamically

— global replacement: one process can ruin it for the rest
* linux uses global replacement

#5: 2nd Chance FIFO

* LRU Clock is a global algorithm
— It looks at all physical pages, from all processes
— Every process gets its memory taken away gradually
* Local algorithms: run page replacement separately for each process
+ 2 Chance FIFO:
— Maintain 2 FIFO queues per process
— On first access, pages go at end of queue 1
— When the drop off queue 1, page are invalidated and move to queue 2
— When they drop off queue 2, they are replaced
— If they are accessed in queue 2, they are put back on queue 1
* Options:
— Move to queue 1 immediately when referenced: mark “invalid” when on queue 2
— Move to queue 2 when about to be evicted: looks like clock
* Comparison to LRU clock:
— Per-process, not whole machine
— No scanning
— Replacement order is FIFO, not PFN
— Used in Windows NT, VMS

2/26/13

Second chance page replacement

* Inspect R bit of oldest page
— Recall: R bits are set when page is referenced (read or
write); periodically (after k clock interrupts), R bits are
cleared.
— If R==0 then
* page is old & unused so replace it
— Else
* Clear R bit

* Move page from head to tail of FIFO
— (treating it as a newly loaded page)
* Try a different page

Second chance page replacement

load time

Page loaded first /
\ Most recently

N0 3 7 8 12 14 15 18
\ . loaded page
page —— c FHe "

(a)

A'is treated like a

3 7 8 12 14 _~ newly loaded page

20
e e HA

(b) ClearR

Fig. 4-16. Operation of second chance. (a) Pages sorted in FIFO
order. (b) Page list if a page fault occurs at time 20 and 4 has its R
bit set. The numbers above the pages are their loading times.

The Working Set Strategy

* s a variable-allocation method with local scope
based on the assumption of locality of references

* The working set for a process at time t, W(D,t), is
the set of pages that have been referenced in the
last D virtual time units

— virtual time = time elapsed while the process was in
execution (eg: number of instructions executed)

— D is a window of time
—atanyt, |W(D,t)| is non decreasing with D
— W(D,t) is an approximation of the program’ s locality

The Working Set Strategy

The working set of a process first grows when

it starts executing

then stabilizes by the principle of locality

it grows again when the process enters a new

locality (transition period)

— up to a point where the working set contains
pages from two localities

then decreases after a sufficient long time

spent in the new locality

2/26/13

#6: Working Set Size

* The working set size changes with program locality
— during periods of poor locality, more pages are referenced
— within that period of time, the working set size is larger

* Intuitively, working set must be in memory, otherwise you’ll
experience heavy faulting (thrashing)
— when people ask “How much memory does Firefox need?”, really they
are asking “what is Firefoxaverage (or worst case) working set size?”
* Hypothetical algorithm:
— associate parameter “w” with each process = # of unique pages
referenced in the last “t” ms that it executed
— only allow a process to start if it’s “w”, when added to all other
processes, still fits in memory
* use a local replacement algorithm within each process (e.g. clock, 2nd chance
FIFO)

The Working Set Strategy

the working set concept suggest the following
strategy to determine the resident set size
— Monitor the working set for each process
— Periodically remove from the resident set of a process
those pages that are not in the working set
— When the resident set of a process is smaller than its
working set, allocate more frames to it

* If not enough free frames are available, suspend the process
(until more frames are available)
— ie: a process may execute only if its working set is in main
memory

The Working Set Strategy

* Practical problems with this working set strategy
— measurement of the working set for each process is
impractical
* necessary to time stamp the referenced page at every
memory reference
* necessary to maintain a time-ordered queue of referenced
pages for each process

— the optimal value for D is unknown and time varying
* Solution: rather than monitor the working set,
monitor the page fault rate!

The Page-Fault Frequency Strategy

* Define an upper bound U
and lower bound L for page
fault rates

¢ Allocate more frames to a
process if fault rate is higher
than U

¢ Allocate less frames if fault
rateis<L

* The resident set size should
be close to the working set

size W L Do nst\@nge allocation

C Page Fault Rate

* We suspend the process if |
the PFF > U and no more free W Number of
frames are available Frames Allocated

2/26/13

Summary

* demand paging
— start with no physical pages mapped, load them in on demand
* page replacement algorithms
— #1: Belady’s — optimal, but unrealizable
— #2: Fifo — replace page loaded furthest in past
— #3: LRU —replace page referenced furthest in past
approximate using PTE reference bit
— #4: LRU Clock — replace page that is “old enough”
— #5: 2nd Chance FIFO — replace local page that is “old enough”

— #6: working set — keep set of pages in memory that induces the
minimal fault rate

* local vs. global replacement
— should processes be allowed to evict each other’s pages?

Thrashing

What the OS does if page replacement algo’s fail
— happens if most of the time is spent by an OS paging data back and
forth from disk
* no time is spent doing useful work
* the system is overcommitted
* no idea which pages should be in memory to reduced faults
 could be that there just isn’t enough physical memory for all processes
— solutions?
Yields some insight into systems researchlers]
— if system has too much memory
* page replacement algorithm doesn’t matter (overprovisioning)
— if system has too little memory
* page replacement algorithm doesn’t matter (overcommitted)
— problem is only interesting on the border between overprovisioned
and overcommitted
* many research papers live here, but not many real systems do...

