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Secondary storage 

•  Secondary storage typically: 
–  is anything that is outside of “primary memory” 
–  does not permit direct execution of instructions or data 

retrieval via machine load/store instructions 

•  Characteristics: 
–  it’s large: 80GB-1TB 
–  it’s cheap: 0.30¢/GB 
–  it’s persistent: data survives power loss 
–  it’s slow: milliseconds to access 

•  why is this slow?? 
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Another trip down memory lane … 

IBM 2314 
About the size of 

 6 refrigerators 
8 x 29MB (M!) 
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Disk trends 

•  Disk capacity, 1975-1989 
–  doubled every 3+ years 
–  25% improvement each year 
–  factor of 10 every decade 
–  exponential, but far less rapid than processor performance 

•  Disk capacity since 1990 
–  doubling every 12 months 
–  100% improvement each year 
–  factor of 1000 every decade 
–  10x as fast as processor performance! 
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Disks and the OS 

•  Disks are messy, messy devices 
–  errors, bad blocks, missed seeks, etc. 

•  Job of OS is to hide this mess from higher-level 
software 
–  low-level device drivers (initiate a disk read, etc.) 
–  higher-level abstractions (files, databases, etc.) 

•  OS may provide different levels of disk access to 
different clients 
–  physical disk block (surface, cylinder, sector) 
–  disk logical block (disk block #) 
–  file logical (filename,  block or record or byte #) 

Types of IO devices 
l  Two categories 

¡ A block device stores information in fixed-size blocks, each 
one with its own address 
l e.g., disks 

¡ A character device delivers or accepts a stream of characters, 
and individual characters are not addressable 
l e.g., keyboards, printers, network cards 

l  Device driver provides interface for these two types of 
devices 
¡ Other OS components see block devices and character 

devices, but not the details of the devices. 
¡ How to effectively utilize the device is the responsibility of the 

device driver 

System Architecture 
•  Devices attach to 

buses 
–  Discover device and 

notify OS 
–  Provide commands 

for communication 
•  Examples: 

–  USB: message-
based 

–  PCI: memory-
mapped I/O 

•  Buses attach to other 
buses 
–  USB attaches 

through PCI 
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2 I/O DEVICES

Graphics

MemoryCPU

Memory Bus
(proprietary)

General I/O Bus
(e.g., PCI)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)

Figure 35.1: Prototypical System Architecture.

designers have adopted this hierarchical approach, where compo-
nents that demands high performance (such as the graphics card) are
nearer the CPU. Lower performance components are further away.
The benefit of placing disks and other slow devices on a peripheral
bus are many; in particular, you can place many devices on such a
slow bus (PCI, for example, might limit you to only a few devices).

35.2 A Canonical Device

Let us now look at a canonical device (not a real one), and use this
device to drive our understanding of some of the machinery required
to make device interaction efficient. From Figure 35.2, we can see
that a device has two important components. The first is the hard-
ware interface it presents to the rest of the system. Just like a piece
of software, hardware must also present some kind of interface that
allows the system software to control its operation. Thus, all devices
have some specified interface and protocol for typical interaction.
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I/O System 
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Device Drivers 
•  Mechanism: Encapsulate details of device 

–  File system not aware of device details 
–  Much of OS code is in device drivers 

•  Responsible for many of the errors as well! 
•  Device driver interacts with device controller 

–  Read status registers, read data 
–  Write control registers, provide data for write operations 

•  How does device driver access controller? 
–  Special instructions 

•  Valid only in kernel mode, No longer popular 
–  Memory-mapped 

•  Read and write to special memory addresses 
•  Protect by placing in kernel address space only 

–  May map part of device in user address space for fast access 

Calling Drivers 

•  Every driver for a type of device (a class) has the 
same interface 
–  If you can call one, you can call them all 

•  Example 
–  Network: 

•  Initialize, send packet, configure, close 
–  Sound 

•  Play sound, record sound, control 
–  Block 

•  Read block, write block 
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Programmed I/O   
•  Devices have registers available through memory-mapped  

I/O 
–  Status, command, data 

•  Programmed I/O loops reading/writing registers = POLLING 
1.  Wait for ready 
2.  Write data 
3.  Write command 
4.  Wait for completion 
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I/O DEVICES 3

Other Hardware-specific Chips
Memory (DRAM or SRAM or both)
Micro-controller (CPU)

Registers Status Command Data Interface

Internals

Figure 35.2: A Canonical Device.

The second part of any device is its internal structure. This part
of the device is implementation specific and is responsible for im-
plementing the abstraction the device presents to the system. Very
simple devices will have one or a few hardware chips to implement
their functionality; more complex devices will include a simple CPU,
some general purpose memory, and other device-specific chips to get
their job done. For example, modern RAID controllers might consist
of hundreds of thousands of lines of firmware (i.e., software within
a hardware device) to implement various RAID functionality (we’ll
learn more about RAID later).

35.3 The Canonical Protocol

In the picture above, the (simplified) device interface is comprised
of three registers: a status register, which can be read to see the cur-
rent status of the device; a command register, to tell the device to
perform a certain task; and a data register to pass data to the device,
or get data from the device. By reading and writing these registers,
the operating system can control device behavior.

Let us now describe a typical interaction that the OS might have
with the device in order to get the device to do something on its
behalf. The protocol is as follows:

While (STATUS == BUSY)
; // wait until device is not busy

Write data to DATA register
Write command to COMMAND register

(Doing so starts the device and executes the command)
While (STATUS == BUSY)

; // wait until device is done with your request

The protocol has four steps. In the first, the OS waits until the de-
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Faster I/O through Interrupts 

•  Polling for available/completion is inefficient 
–  CPU is busy waiting for slow I/O device 

•  Better approach: do something else, get notified 
when I/O complete: an interrupt 
–  Interrupt service routine (ISR) in driver gets called to do 

the work (e.g. loop writing data 

–  Speeds steps 1,4 

•  Interrupts are not always faster. When not? 
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for the I/O, which can then proceed as desired.
Interrupts thus allow for overlap of computation and I/O, which

is key for improved utilization. This timeline shows the problem:

CPU 1111111111ppppppppppp111111111111
Disk ----------11111111111------------

In the diagram, process 1 runs on the CPU for some time (indi-
cated by a repeated 1 on the CPU line), and then issues an I/O re-
quest to the disk to read some data. Without interrupts, the system
simply spins, polling the status of the device repeatedly until the I/O
is complete (indicated by a p). The disk then services the request and
finally process 1 can run again.

If instead we utilize interrupts and allow for overlap, the OS can
do something else while waiting for the disk:

CPU 111111111122222222222111111111111
Disk ----------11111111111------------

In this example, the OS runs process 2 on the CPU while the disk
services 1’s request. When the disk request is finished, an interrupt
occurs, and the OS wakes up 1 and runs it again. Thus, both the CPU
and the disk are properly utilized during the middle stretch of time.

Note that using interrupts is not always the best solution. For ex-
ample, imagine a device that performs its tasks very quickly: the first
poll usually finds the device to be done with task. Using an interrupt
in this case will actually slow down the system: switching to another
process, handling the interrupt, and switching back to the issuing
process is expensive. Thus, if a device is fast, it may be best to poll;
if it is slow, interrupts, which allow overlap, are best. If the speed
of the device is not known, or sometimes fast and sometimes slow,
it may be best to use a hybrid that polls for a little while and then,
if the device is not yet finished, uses interrupts. This two-phased
approach may achieve the best of both worlds.

Another reason not to use interrupts arises in networks [MR96].
When a huge stream of incoming packets each generate an interrupt,
it is possible for the OS to livelock, that is, find itself only processing
interrupts and never allowing a user-level process to run and actu-
ally service the requests. For example, imagine a web server that
suddenly experiences a high load due to the “slashdot effect”. In this
case, it is better to occasionally use polling to better control what is
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Device Drivers:  
Starting I/O 

•  Interrupts don’t help with step 2: copying data 

•  Direct Memory Access (DMA) 
–  Offload work from CPU to to special-purpose processor responsible 

for large transfers 
–  CPU: Write DMA command block into main memory 

•  Pointer to source and destination address 
•  Size of transfer 

–  CPU: Inform DMA controller of address of command block 
–  DMA controller: Handles transfer with I/O device controller 

6 I/O DEVICES

ASIDE: INTERRUPTS NOT ALWAYS BETTER THAN PIO
Although interrupts allow for overlap of computation and I/O, they
only really make sense for slow devices. Otherwise, the cost of in-
terrupt handling and context switching may outweigh the benefits
interrupts provide. There are also cases where a flood of interrupts
may overload a system and lead it to livelock [MR96]; in such cases,
polling provides more control to the OS in its scheduling and thus is
again useful.

happening in the system and allow the web server to service some
requests before going back to the device to check for more packet
arrivals.

Another interrupt-based optimization is coalescing. In such a
setup, a device which needs to raise an interrupt first waits for a
bit before delivering the interrupt to the CPU. While waiting, other
requests may soon complete, and thus multiple interrupts can be co-
alesced into a single interrupt delivery, thus lowering the overhead
of interrupt processing. Of course, waiting too long will increase the
latency of a request, a common trade-off in systems. See Ahmad et
al. [A+11] for an excellent summary.

35.5 More Efficient Data Movement with DMA

Unfortunately, there is one other aspect of our canonical protocol
that requires our attention. In particular, when using programmed
I/O (PIO) to transfer a large chunk of data to a device, the CPU is
once again overburdened with a rather trivial task, and thus wastes
a lot of time and effort that could better be spent running other pro-
cesses. This timeline illustrates the problem:

CPU 1111111111cccccc22222222222111111111111
Disk ----------------11111111111------------

In the timeline, process 1 is running and then wishes to write
some data to the disk. It then initiates the I/O, which must copy
the data from memory to the device explicitly, one word at a time
(marked c in the diagram). When the copy is complete, the I/O be-
gins on the disk and the CPU can finally be used for something else.

OPERATING
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THE CRUX: HOW TO LOWER PIO OVERHEADS

With PIO, the CPU spends too much time moving data to and
from devices by hand. How can we offload this work and thus allow
the CPU to be more effectively utilized?

The solution to this problem is something we refer to as Direct
Memory Access (DMA). A DMA engine is essentially a very specific
device within a system that can orchestrate transfers between devices
and main memory without much CPU intervention.

The process is as follows. To transfer data to the device, for ex-
ample, the OS would program the DMA engine by telling it where
the data lives in memory, how much data to copy, and which device
to send it to. At that point, the OS is done with the transfer and can
proceed with other work. When the DMA is complete, the DMA
controller raises an interrupt, and the OS thus knows the transfer is
complete. The revised timeline:

CPU 111111111122222222222222222111111111111
DMA ----------cccccc-----------------------
Disk ----------------11111111111------------

From the timeline, you can see that the copying of data is now
handled by the DMA controller. Because the CPU is free during that
time, the OS can do something else, here choosing to run process 2.
Process 2 thus gets to use more CPU before process 1 runs again.

35.6 Methods of Device Interaction

Now that we have some sense of the efficiency issues involved
with performing I/O, there are a few other problems we need to
handle to incorporate devices into modern systems. One problem
you may have noticed thus far: we have not really said anything
about how the OS actually communicates with the device! Thus, the
problem we need to deal with is:
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Disk Characteristics 

•  Disk platters:  coated with magnetic materials for 
recording 

Disk 
platters 

Disk Characteristics 

•  Disk arm:  moves a comb of disk heads 
–  Only one disk head is active for reading/writing 

Disk 
platters 

Disk arm 

Disk heads 

Hard Disk Trivia… 

•  Aerodynamically designed to fly 
–  As close to the surface as possible 
–  No room for air molecules 
–  Like flying a 747 at Mach 41 inch off the ground (in 1982!) 

•  Therefore, hard drives are filled with special inert gas  
•  If head touches the surface 

–  Head crash 
–  Scrapes off magnetic information 
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Disk Characteristics 

•  Each disk platter is divided into concentric tracks 

Disk 
platters 

Disk arm 

Disk heads 

Track 

Disk Characteristics 

•  A track is further divided into sectors.  A sector is the 
smallest unit of disk storage 

Disk 
platters 

Disk arm 

Disk heads 

Track 

Sector 

Disk Characteristics 

•  A cylinder consists of all tracks with a given disk arm 
position 

Disk 
platters 

Disk arm 

Disk heads 

Track 

Sector 

Cylinder 

Disk Characteristics 

•  Cylinders are further divided into zones 

Disk 
platters 

Disk arm 

Disk heads 

Track 

Sector 

Cylinder 

Zones 



6 

Disk Characteristics 

•  Zone-bit recording:  zones near the edge of a disk 
store more information (higher bandwidth) 

Disk 
platters 

Disk arm 

Disk heads 

Track 

Sector 

Cylinder 

Zones 

More About Hard Drives Than You 
Ever Want to Know 

•  Track skew:  starting position of each track is 
slightly skewed (not all in a straight line) 
–  Minimize rotational delay when sequentially 

transferring bytes across tracks 

•  Thermo-calibrations:  periodically performed 
to account for changes of disk radius due to 
temperature changes  

•  Typically 100 to 1,000 bits are inserted 
between sectors to account for minor 
inaccuracies 
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Interacting with disks 
•  In the old days… 

–  OS would have to specify cylinder #, sector #, surface #, 
transfer size 

•  i.e., OS needs to know all of the disk parameters 

•  Modern disks are even more complicated 
–  not all sectors are the same size, sectors are remapped, … 
–  disk provides a higher-level interface, e.g., SCSI 

•  exports data as a logical array of blocks [0 … N] 
•  maps logical blocks to cylinder/surface/sector 
•  OS only needs to name logical block #, disk maps this to 

cylinder/surface/sector 
•  on-board cache 
•  as a result, physical parameters are hidden from OS 

–  both good and bad 

3/5/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and 
Remzi Arpaci-Dussea, Michael Swift 24 

Disk Controller 
•  Responsible for interface between OS and disk drive 

–  Common interfaces: ATA/IDE vs. SCSI 
•  ATA/IDE used for personal storage: slow rotation, seek, high capacity 
•  SCSI for enterprise-class storage: faster rotation and seek 
•  QUESTION: which will be larger diameter? Which will have more 

platters?  
•  Basic operations 

–  Read block  
–  Write block 

•  OS does not know of internal complexity of disk 
–  Disk exports array of Logical Block Numbers (LBNs) 
–  Disks map internal sectors to LBNs 

•  Implicit contract:  
–  Large sequential accesses to contiguous LBNs achieve much 

better performance than small transfers or random accesses 
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Disk Abstraction 
•  How should disk map internal sectors to LBNs? 
•  Goal: Sequential accesses (or contiguous LBNs) should 

achieve best performance 
•  Approaches: 

–  Traditional ordering 
 
 
 

–  Serpentine ordering 

Flash disks: solid state storage 

•  A flash block is a grid of cells 
–  Single Level Cell (SLC) = 1 bit per cell (faster, more reliable) 
–  Multi Level Cell (MLC) = 2 bits per cell (slower, less reliable) 
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Background 
Write-in-Place vs. Logging 

•  Rotating disks 
–  Constant map from 

LBA to on-disk location 

•  SSDs 
–  Writes always to new locations 
–  Superseded blocks cleaned later 
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Striping 

•  LBAs striped across flash packages 
–  Single request can span multiple chips 
–  Natural load balancing 

Controller 
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SSD performance 
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Device Random 
Read µs 

Seq 
Read µs 

Random 
Write µs 

Seq. 
Write µs 

$/GB 

DRAM 0.05 0.05 0.05 0.05 $15 
Flash 100 85 2,000 200-500 $3 
Disk 5,000 500 5,000 500 $0.3 


