
4/2/13

1

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 1

CS 537
Lecture 14

Optimized File Systems

Michael Swift

4/2/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 2

Goals
•  Unix FS largely ignorant of locality

–  Puts inodes, data blocks anywhere on disk

•  OS allocates LBNs (logical block numbers) to meta-data, file
data, and directory data
–  Workload items accessed together should be close in LBN space
–  Leverage temporal locality with spatial locality on disk

•  Implications
–  Large files should be allocated sequentially
–  Files in same directory should be allocated near each other
–  Data should be allocated near its meta-data

•  Meta-Data: Where is it stored on disk?
–  Embedded within each directory entry
–  In data structure separate from directory entry

•  Directory entry points to meta-data

4/2/13 © 2005 Hank Levy 3

More Recent File Systems
–  BSD Unix FFS

•  what’s at the heart of most UNIX file systems
–  LFS

•  a research file system originally from Berkeley

4/2/13 © 2005 Hank Levy 4

BSD UNIX FFS
•  FFS = “Fast File System”

–  original (i.e. 1970’s) file system was very simple and
straightforwardly implemented

•  but had very poor disk bandwidth utilization
•  why? far too many disk seeks on average

–  From directories to inodes, from inodes to data, and between data
blocks

•  BSD UNIX folks did a redesign in the mid ’80’s
–  FFS: improved disk utilization, decreased response time
–  McKusick, Joy, Fabry, and Leffler
–  basic idea is FFS is aware of disk structure

•  I.e., place related things on nearby cylinders to reduce seeks

4/2/13

2

4/2/13 © 2005 Hank Levy 5

Review: Inodes and Path Search
•  Unix Inodes are NOT directories

–  they describe where on disk the blocks for a file are placed
•  directories are just files, so each directory also has an inode

that describes where the blocks for the directory is placed

•  Directory entries map file names to inodes
–  to open “/one”, use master block to find inode for “/” on disk

•  open “/”, look for entry for “one”
•  this gives the disk block number for inode of “one”

–  read the inode for “one” into memory
•  this inode says where the first data block is on disk
•  read that data block into memory to access the data in the file

4/2/13 © 2005 Hank Levy 6

Data and Inode placement
•  Original (non-FFS) unix FS had two major problems:

–  1. data blocks are allocated randomly in aging file systems
(using linked list)

•  blocks for the same file allocated sequentially when FS is new
•  as FS “ages” and fills, need to allocate blocks freed up when

other files are deleted
–  problem: deleted files are essentially randomly placed
–  so, blocks for new files become scattered across the disk!

–  2. inodes are allocated far from blocks
•  all inodes at beginning of disk, far from data
•  traversing file name paths, manipulating files, directories

requires going back and forth from inodes to data blocks

–  BOTH of these generate many long seeks!

4/2/13 © 2005 Hank Levy 7

Cylinder groups
•  FFS addressed these problems using notion of a

cylinder group
–  disk partitioned into groups of cylinders
–  data blocks from a file all placed in same cylinder group
–  files in same directory placed in same cylinder group
–  inode for file in same cylinder group as file’s data

•  Introduces a free space requirement
–  to be able to allocate according to cylinder group, the disk

must have free space scattered across all cylinders
•  Need index of free blocks/inodes within a cylinder group

–  in FFS, 10% of the disk is reserved just for this purpose!
•  good insight: keep disk partially free at all times!
•  this is why it may be possible for df to report >100%

•  1 or more consecutive cylinders into a “cylinder group”

–  Key: can access any block in a cylinder without performing a seek. Next
fastest place is adjacent cylinder.

–  Tries to put everything related in same cylinder group
–  Tries to put everything not related in different group (?!)

Clustering related objects in FFS

Cylinder group 1

cylinder group 2

4/2/13

3

4/2/13 © 2005 Hank Levy 9

File Buffer Cache (not just for FFS)
•  Exploit locality by caching file blocks in memory

–  cache is system wide, shared by all processes
–  even a small (4MB) cache can be very effective
–  many FS’s “read-ahead” or “prefetch” into buffer cache

•  Caching writes
–  some apps assume data is on disk after write

•  need to “write-through” the buffer cache
–  Or “write-behind”: maintain queue of uncommitted blocks,

periodically (~30 seconds) flush. Unreliable!
•  Fsync() forces a flush

•  Buffer cache issues:
–  competes with VM for physical frames

•  integrated VM/buffer cache?
–  need replacement algorithms here

•  LRU usually

4/2/13 © 2005 Hank Levy 10

Log-Structured File System (LFS)
•  LFS was designed in response to two trends in

workload and disk technology:
–  1. Disk bandwidth scaling significantly (40% a year)

•  but, latency is not
–  2. Large main memories in machines

•  therefore, large buffer caches
–  absorb large fraction of read requests in caches

•  can use for writes as well
–  coalesce small writes into large writes

•  LFS takes advantage of both to increase FS
performance
–  Now used extensively in solid-state disks.

4/2/13 © 2005 Hank Levy 11

FFS problems that LFS solves
•  FFS: placement improved, but can still have many

small seeks
–  possibly related files are physically separated
–  inodes separated from files (small seeks or rotations)
–  directory entries separate from inodes

•  FFS: metadata required synchronous writes for
correctness after a crash
–  Example: need to ensure free inode bitmap updated before

adding inode to a directory
–  with small files, most writes are to metadata
–  synchronous writes are very slow: cannot use scheduling to

improve performance

4/2/13 © 2005 Hank Levy 12

LFS: The Basic Idea
•  Treat the entire disk as a single log for appending

–  collect writes in the disk buffer cache, and write out the
entire collection of writes in one large request

•  leverages disk bandwidth with large sequential write
•  no seeks at all! (assuming head at end of log)

–  all info written to disk is appended to log
•  data blocks, attributes, inodes, directories, .etc.

•  Sounds simple!
–  but it’s really complicated under the covers

4/2/13

4

LFS Disk Layout Compared to Unix
Layout

Disk

Disk

Log

Inode Directory Data

Sprite LFS

Unix FFS

dir1 dir2

file1 file2

dir1 dir2

file1 file2

4/2/13 © 2005 Hank Levy 14

LFS Challenges
•  There are two main challenges with LFS:

–  1. locating data written in the log
•  FFS places files in a well-known location, LFS writes data “at

the end of the log”
–  2. managing free space on the disk

•  disk is finite, and therefore log must be finite
•  cannot always append to log!

–  need to recover deleted blocks in old part of log
–  need to fill holes created by recovered blocks

LFS Threaded Segments
•  Sprite LFS uses a hybrid scheme.

–  Disk divided into fixed size segments.
•  Threaded between segments (connected as a list).
•  Compaction within a segment.

–  Segment size chosen so that transfer time is much greater than
access time: 512 KB or 1 MB.

1

2 3

4

5

6

1

2

3

4

5

6

4/2/13 © 2005 Hank Levy 16

LFS: locating data
•  FFS uses inodes to locate data blocks

–  inodes preallocated in each cylinder group
–  directories contain locations of inodes

•  LFS appends inodes to end of log, just like data
–  makes them hard to find

•  Solution:
–  use another level of indirection: inode maps
–  inode maps map file #s to inode location
–  location of inode map blocks are kept in a checkpoint region
–  checkpoint region has a fixed location
–  cache inode maps in memory for performance

4/2/13

5

Extra Metadata: Inode Map

Disk Log

Inode Directory Data Inode map

Sprite LFS

dir1 dir2

file1 file2

4/2/13 © 2005 Hank Levy 18

LFS: free space management
•  LFS: append-only quickly eats up all disk space

–  need to recover deleted blocks

•  Solution:
–  fragment log into segments
–  thread segments on disk

•  segments can be anywhere
–  reclaim space by cleaning segments

•  read segment
•  copy live data to end of log
•  now have free segment you can reuse!

–  cleaning is a big problem
•  costly overhead, when do you do it?

–  “idleness is not sloth”

4/2/13 © 2005 Hank Levy 19

An Interesting Debate
•  Ousterhout vs. Seltzer

–  OS researchers have very “energetic” personalities
•  famous for challenging each others’ ideas in public

–  Seltzer published a 1995 paper comparing and contrasting BSD
LFS with conventional FFS

•  Ousterhout published a “critique of Seltzer’s LFS Measurements”,
rebutting arguments that LFS performs poorly in some situations

•  Seltzer published “A Response to Ousterhout’s Critique of LFS
Measurements”, rebutting the rebuttal…

•  Ousterhout published “A Response to Seltzer’s Response”, rebutting
the rebuttal of the rebuttal…

–  moral of the story:
•  *very* difficult to predict how a FS will be used

–  so it’s hard to generate reasonable benchmarks, let alone a reasonable FS
design

•  *very* difficult to measure a FS in practice
–  depends on a HUGE number of parameters, including workload and

hardware architecture

