
4/4/13

1

4/4/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 1

CS 537
Lecture 15

Journaling File Systems

Michael Swift

Journaling File Systems

Questions answered in this lecture:
Why is it hard to maintain on-disk consistency?
How does the FSCK tool help with consistency?
What information is written to a journal?
What 3 journaling modes does Linux ext3 support?

UNIVERSITY of WISCONSIN-MADISON
Computer Sciences Department

CS 537
Introduction to Operating Systems

Andrea C. Arpaci-Dusseau
Remzi H. Arpaci-Dusseau

Review: The I/O Path (Reads)

•  Read() from file
–  Check if block is in cache
–  If so, return block to user

[1 in figure]
–  If not, read from disk, insert into

cache, return to user [2]

Disk

Main

Memory

(Cache)

1

2

Block�
in

cache

Block�
 Not in

cache

L
e
a
v
e
 c

o
p
y
 i

n
 c

a
c
h

e

Review: The I/O Path (Writes)

•  Write() to file
–  Write is buffered in memory

(“write behind”) [1]
–  Sometime later, OS decides

to write to disk [2]

•  Why delay writes?
–  Implications for performance
–  Implications for reliability

Disk

Main

Memory

(Cache)

1

2

Buffer in memory

Later

Write to

disk

4/4/13

2

Many “dirty” blocks in memory:
What order to write to disk?

•  Example: Appending a new block to existing file
–  Write data bitmap B (for new data block),

write inode I of file (to add new pointer, update time),
write new data block D

B
 I
 D

Disk

Memory
?
 ?
 ?

The Problem

•  Writes: Have to update disk with N writes
–  Disk does only a single write atomically

•  Crashes: System may crash at arbitrary point
–  Bad case: In the middle of an update sequence

•  Desire: To update on-disk structures atomically
–  Either all should happen or none

Example: Bitmap first

•  Write Ordering: Bitmap (B), Inode (I), Data (D)
–  But CRASH after B has reached disk, before I or D

•  Result?

B
 I
 D

Disk

Memory

Example: Inode first

•  Write Ordering: Inode (I), Bitmap (B), Data (D)
–  But CRASH after I has reached disk, before B or D

•  Result?

B
 I
 D

Disk

Memory

4/4/13

3

Example: Inode first

•  Write Ordering: Inode (I), Bitmap (B), Data (D)
–  CRASH after I AND B have reached disk, before D

•  Result?

B
 I
 D

Disk

Memory

Example: Data first

•  Write Ordering: Data (D) , Bitmap (B), Inode (I)
–  CRASH after D has reached disk, before I or B

•  Result?

B
 I
 D

Disk

Memory

Traditional Solution: FSCK

•  FSCK: “file system checker”
•  When system boots:

–  Make multiple passes over file system,
looking for inconsistencies

•  e.g., inode pointers and bitmaps,
directory entries and inode reference counts

–  Either fix automatically or punt to admin
–  Does fsck have to run upon every reboot?

•  Main problem with fsck: Performance
–  Sometimes takes hours to run on large disk volumes

How To Avoid The Long Scan?

•  Idea: Write something down to disk before
updating its data structures
–  Called the “write ahead log” or “journal”

•  When crash occurs, look through log and see
what was going on
–  Use contents of log to fix file system structures
–  The process is called “recovery”

4/4/13

4

Case Study: Linux ext3
•  Journal location

–  EITHER on a separate device partition
–  OR just a “special” file within ext2

•  Three separate modes of operation:

–  Data: All data is journaled
–  Ordered, Writeback: Just metadata is journaled

•  First focus: Data journaling mode

Transactions in ext3 Data Journaling
Mode

•  Same example: Update Inode (I), Bitmap (B), Data
(D)

•  First, write to journal:
–  Transaction begin (Tx begin)
–  Transaction descriptor (info about this Tx)
–  I, B, and D blocks (in this example)
–  Transaction end (Tx end)

•  Then, “checkpoint” data to fixed ext2 structures
–  Copy I, B, and D to their fixed file system locations

•  Finally, free Tx in journal
–  Journal is fixed-sized circular buffer, entries

must be periodically freed

What if there’s a Crash?

•  Recovery: Go through log and “redo” operations
that have been successfully commited to log

•  What if …
–  Tx begin but not Tx end in log?
–  Tx begin through Tx end are in log,

but I, B, and D have not yet been checkpointed?
–  What if Tx is in log, I, B, D have been checkpointed,

but Tx has not been freed from log?

•  Performance? (As compared to fsck?)

Complication: Disk Scheduling
•  Problem: Low-levels of I/O subsystem in OS

and even the disk/RAID itself may reorder requests
•  How does this affect Tx management?

–  Where is it OK to issue writes in parallel?
•  Tx begin
•  Tx info
•  I, B, D
•  Tx end
•  Checkpoint: I, B, D copied to final destinations
•  Tx freed in journal

4/4/13

5

Problem with Data Journaling

•  Data journaling: Lots of extra writes
–  All data committed to disk twice

(once in journal, once to final location)

•  Overkill if only goal is to keep metadata consistent
•  Instead, use ext2 writeback mode

–  Just journals metadata
–  Writes data to final location directly, at any time

•  Problems?
•  Solution: Ordered mode

–  How to order data block write w.r.t. Tx writes?

Conclusions
•  Journaling

–  All modern file systems use journaling to
reduce recovery time during startup
(e.g., Linux ext3, ReiserFS, SGI XFS, IBM JFS, NTFS)

–  Simple idea: Use write-ahead log to record some
info about what you are going to do before doing it

–  Turns multi-write update sequence into a single
atomic update (“all or nothing”)

–  Some performance overhead: Extra writes to journal
•  Worth the cost?

