
1

4/18/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 1

CS 537
Lecture 18

Semaphores

Michael Swift

Threading Review
int value = 0;

/* the thread */
void * runner(void * param)
{
 value = 5;
 pthread_exit(0);
}

int main(int argc, char * argv[])
{
 int pid;
 pthread_t tid;

 pid = fork();
 if (pid == 0) { /* child process */
 pthread_create(&tid, NULL /* attributes */, runner, NULL /* arg */);
 pthread_join(tid, NULL);
 printf("Child: value = %d\n",value); /* LINE A */
 } else { /* parent process */
 wait(NULL); /* wait for child */
 printf("Parent: value = %d\n",value); /* LINE B */
 }
}

4/18/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 2

What gets printed?

Lock Granularity

Global lock
Lock g_lock;

Withdraw(account, amount) {
 acquire(g_lock);
 balance = account.balance;
 balance -= amount;
 account.balance = balance
 release(g_lock);
}
Deposit(account, amount) {
 acquire(g_lock);
 balance = account.balance;
 balance += amount;
 account.balance = balance
 release(g_lock);
}

Fine grain locks
Struct account_s {
 int balance;
 Lock a_lock;
}

Withdraw(account, amount) {
 acquire(account.a_lock);
 balance = account.balance;
 balance -= amount;
 account.balance = balance
 release(account.a_lock);
}
 4/18/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift 3

Locks protect data, not code! Problems with fine grained locks
Struct account_s {
 int balance;
 Lock a_lock;
}

transfer(acc1,acc2, amount) {
 acquire(acc1.a_lock);
 acquire(acc2.a_lock);
 acc1.balance -= amount;
 acc2.balance += amount;
 release(acc1.a_lock);
 release(acc2.a_lock);
}

•  Problem:
–  T1: transfer(mike,jill)
–  T2: transfer(jill,mike)

T1: acquire(mike.a_lock);
T2: acquire(jill.a_lock);
T1: acquire(jill.a_lock)
T2: acquire(mike.a_lock);

4/18/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 4

2

4/18/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 5

Disabling Interrupts
•  An alternative:

•  Can two threads disable interrupts simultaneously?
•  What’s wrong with interrupts?

–  only available to kernel (why? how can user-level use?)
–  insufficient on a multiprocessor

•  back to atomic instructions

•  Like spinlocks, only use to implement higher-level
synchronization primitives

struct lock {

}

void acquire(lock) {

 cli(); // disable interrupts

}

void release(lock) {

 sti(); // reenable interupts

}

4/18/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 6

Problems with spinlocks

•  Horribly wasteful!
–  if a thread is spinning on a lock, the thread holding the lock

cannot make process

•  How did lock holder yield the CPU in the first place?
–  calls yield() or sleep()
–  involuntary context switch

•  Only want spinlocks as primitives to build higher-level
synchronization constructs

•  SOLUTION: blocking locks
–  suspend thread on a wait queue until lock released
–  More later…

4/18/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 7

Blocking in Semaphores
•  Each semaphore has an associated queue of processes/threads

–  when wait() is called by a thread,
•  if semaphore is “available”, thread continues
•  if semaphore is “unavailable”, thread blocks, waits on queue

–  signal() opens the semaphore
•  if thread(s) are waiting on a queue, one thread is unblocked
•  if no threads are on the queue, the signal is remembered for next time a

wait() is called
•  In other words, semaphore has history

–  this history is a counter
–  if counter falls below 0 (after decrement), then the semaphore is

closed
•  wait decrements counter
•  signal increments counter

4/18/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 8

Example: bounded buffer problem

•  AKA producer/consumer problem
–  there is a buffer in memory

•  with finite size N entries
–  a producer process inserts an entry into it
–  a consumer process removes an entry from it

•  Processes are concurrent
–  so, we must use synchronization constructs to control

access to shared variables describing buffer state

3

4/18/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 9

Producer/Consumer: Single Buffer
•  Simplest case:

–  Single producer thread, single consumer thread
–  Single shared buffer between producer and consumer

•  Requirements
–  Consumer must wait for producer to fill buffer
–  Producer must wait for consumer to empty buffer (if filled)

•  Requires 3 semaphores
–  emptyBuffer: Initialize to ???
–  fullBuffer: Initialize to ???
–  mutex: Initialize to ???

Producer!

While (1) { !!

!wait(&emptyBuffer);  
!wait(&mutex);
! !
!Fill(&buffer);  
!signal(&mutex);  
!signal(&fullBuffer);!

}!

Consumer!

While (1) {  
!wait(&fullBuffer);  
!wait(&mutex);  
!Use(&buffer);  
!signal(&mutex);  
!signal(&emptyBuffer);  

}!

4/18/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 10

Example: Readers/Writers

•  Basic problem:
–  object is shared among several processes
–  some read from it
–  others write to it

•  We can allow multiple readers at a time
–  why?

•  We can only allow one writer at a time
–  why?

4/18/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 11

Readers/Writers using Semaphores
semaphore mutex !; controls access to readcount!
semaphore wrt !; control entry to a writer or first reader!
int readcount !; number of readers!
!
write process:!

!wait(wrt) !; any writers or readers?!
! <perform write operation>!
!signal(wrt) !; allow others!

!
read process:!

!wait(mutex) !; ensure exclusion!
! !readcount = readcount + 1 ; one more reader!
! !if (readcount == 1) wait(wrt) ; if we’re the first, synch with
writers!
!signal(mutex)!
! !<perform reading>!
!wait(mutex) !; ensure exclusion!
! !readcount = readcount - 1 ; one fewer reader!
! !if (readcount = 0) signal(wrt) ; no more readers, allow a
writer!
!signal(mutex)!

4/18/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 12

Readers/Writers notes

•  Note:
–  the first reader blocks if there is a writer

•  any other readers will then block on mutex
–  if a writer exists, last reader to exit signals waiting writer

•  can new readers get in while writer is waiting?
–  when writer exits, if there is both a reader and writer waiting,

which one goes next is up to scheduler

4

Example: implement join

•  Goal: use semaphores to wait for a thread to
complete.
–  What should sem be initialized to?

4/18/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 13

Sempahore sem;

main() {
 sem_init(sem, ??);

 create_thread(myfunc);
 wait(sem);
}

myfunc() {
 do_work ();
 signal(sem);
}

