CS 537
Lecture 19
Condition Variables/Monitors

Michael Swift

) 2004-2007
1/23/13 Andrea and Rem

Barber code

Variables: boolean shop_full = false;
sem_wait(&mutex);

if (open_chairs == 0)
sem_t customer; shop_full = true;

sem_t barber;

sem_t mutex; else open_chairs--;

. . sem_signal(&mutex);
int open_chairs = 3;

Initialization: if (Ishop_full) {
sem_init(&barber, 0); sem_signal(&barber);
sem_wait(&customer);

sem_init(&customer, 0);
sem_init(&mutex, 1);

}

Barber Code

Barber:
while (1) {
sem_wait(&barber);

sem_wait(&mutex);
open_chairs++;
move_customer_to_barber_chair();
sem_signal(&mutex);

cut_hair();
sem_signal(&customer);

Dining Philosophers

* Problem Statement:
— N Philosophers sitting at a round table
— Each philosopher shares a fork with neighbor
— Each philosopher must have both forks to eat
— Neighbors can’t eat simultaneously
— Philosophers alternate between thinking and eating
* Each philosopher/thread i runs following code:
while (1) {
think();
take_forks(i);
eat();
put_forks(i);

4/23/13

4/23/13

Dining Philosophers: Attempt #1

Two neighbors can’t use fork at same time
Must test if fork is there and grab it atomically
— Represent each fork with a semaphore
— Grab right fork then left fork
Code for 5 philosophers:
sem_t fork[5]; // Initialize each to 1
take_forks(int i) {
wait(&fork[i]);
wait (&fork[(i+1)%5]);
}
put_forks(int i) {
signal(&fork[i]);
signal(&fork[(i+1)%5]1);
}
What is wrong with this solution???

D 2004-2007 E
3/13 Andrea and Remzi Arpz

Swift

Dining Philosophers: Attempt #2

* Approach
— Grab lower-numbered fork first, then higher-numbered
¢ Code for 5 philosophers:
« sem_t fork[5]; // Initialize to 1
take_forks(int i) {
if (1 < 4) {
wait(&fork([i]);
wait(&fork[i+l]);
} else {
wait(&fork[0]);
wait(&fork([4]);

¢ What is wrong with this solution???

) 2004-2007 E
1/23/13 Andrea and Rel

23/13 Andrea and Remzi A

Dining Philosophers:
How to Approach

Guarantee two goals
— Safety: Ensure nothing bad happens (don’t violate constraints of problem)

— Liveness: Ensure something good happens when it can (make as much
progress as possible)

Introduce state variable for each philosopher i
- state[i] = THINKING, HUNGRY, or EATING

Safety: No two adjacent philosophers eat simultaneously

— for all i: !(state[i]==EATING && state[i+1%5]==EATING)

Liveness: Not the case that a philosopher is hungry and his neighbors are
not eating

— for all i: !(state[i]==HUNGRY &&

(state[i+4%5]!=EATING && state[i+1%5]!=EATING))

) 2004-2007 Ed Lazc

Swift

Dining Philosophers: Solution

sem_t mayEat[5]; // how to initialize?

sem_t mutex; // how to init?

int state[5] = {THINKING};

take_forks(int i) {
wait(&mutex); // enter critical section
state[i] = HUNGRY;
testSafetyAndLiveness(i); // check if I can run
signal(&mutex); // exit critical section
wait(&mayEat[i]);

put_forks(int i) {
wait(s&mutex); // enter critical section
state[i] = THINKING;
test(i+l %5); // check if neighbor can run now
test(i+d 85);
signal(&mutex); // exit critical section

}

testSafetyAndLiveness(int i) {
if (state[i]==HUNGRY && state[i+4%5]!=EATING&&state[i+1%5]!=EATING)
state[i] = EATING;
signal (smayEat[i]);
}

) 2004-2007 Ec

4/23/13 Andrea and Remzi A

4/23/13

Two Classes of Synchronization
Problems

* Uniform resource usage with simple scheduling
constraints
— No other variables needed to express relationships
— Use one semaphore for every constraint
— Examples: thread join and producer/consumer

* Complex patterns of resource usage
— Cannot capture relationships with only semaphores
— Need extra state variables to record information

— Use semaphores such that
* One is for mutual exclusion around state variables
* One for each class of waiting

* Always try to cast problems into first, easier type

) 2004-2007 Ed Lazowska, Hank Levy

23/13 Andrea and Ren:

\rpaci-Dussea, Michael
Swift

A monitor

waiting queue of processes
trying to enter the monitor

shared data

(HHF 0O

at most one process
in monitor at a time

operations (procedures)

23/13

7 Ed Lazowska, Hank Levy
Dussea, Michael

Readers and Writers Monitor Example

Monitor ReadersNWriters {
int WaitingWriters,

WaitingReaders,
NReaders, NWriters;

Condition CanRead, CanWrite;

mutex_t lock;

Void BeginWrite() {
acquire(lock);
while(NWriters == |

NReaders > 0) {
++WaitingWriters;
wait (CanWrite);
--WaitingWriters;

}
NWriters = 1;
release(lock);

}) 2004-2007

4/23/13 Andrea and Remzi Arpaci-Dus:
Sw

Void EndWrite() {
acquire(lock);
NWriters = 0;
if (WaitingReaders)

Signal(CanRead) ;
else Signal(CanWrite);
Release(lock);

d Lazows|

Readers and Writers Monitor Example

Void BeginRead() {
acquire(lock);
bool didwait = F;
while(NWriters == [
(WaitingWriters > 0 &&
NReaders > 0 &&
tdidwait)) {
++WaitingReaders;
Wait (CanRead);
--WaitingReaders;
didwait = T;
}
++NReaders;
Signal(CanRead) ;
release(lock);

Monitor
ReadersNWriters {
int WaitingWriters,
WaitingReaders,
NReaders,
NWriters;
Condition CanRead,
CanWrite;
mutex_t lock;

Void EndRead() {
acquire(lock);
if (--NReaders ==
0)
Signal(CanWrite);
release(lock);

}

2007 Ed Lazowska, Hank Levy

4/23/13 emzi Arpaci-D!

Swift

ea, Michael

4/23/13

Examples

* Traffic light
— Only one direction of traffic can flow at a time

) 2004-2007 Ed L

1/23/13 Andrea and Rem:

Traffic light

struct traffic_light{
enum direction = {left, right};
enum color = {green, yellow, red};
color current_color[direction] = {green, red};
cond_t changed[direction];
direction current_dir = left;
direction light_dir = left;
int in_intersection = 0;
mutex_t *lock;

enter_left(dir)
mutex_lock(lock)
while ((current_dir != dir) && (current_color != green))
cond_wait(changed[dir], loock);
in_intersection++;
mutex_unlock(lock);
return;

exit(dir)
mutex_lock(lock)
in_intersection--;
if (in_intersection == 0) && (current_color[dir] == red) {
current_dir = light_dir;
broadcast (changed[other_dir(dir)]);

mutex_unlock(lock);

) 2004-2007 Ed Lazow

a, Hank Levy

1/23/13 Andrea and Remzi Arpac sea, Michael

Traffic light

timer ()
mutex_lock(lock);
switch(current_color[light_dir]) {
case green:

current_color[light_dir] = yellow;
case yellow:

current_color[light_dir] = red;

current_dir = other_dir(light_dir);

current_color[light_dir] = green;

if (in_intersection == 0) {

current_dir = light_dir;
broadcast(changed[current_dir]);

mutex_unock(lock);

) 2004-2007
4/23/13 Andrea and Rem:

In-class Problem

* Afileis to be shared among different threads, each of

which has a unique number.

* The file can be accessed simultaneously by several threads,

subject to a single constraint: the sum of the numbers of
the threads cannot exceed n, where n is a constant.

* Write code using locks and condition variables to

coordinate access to the file. The interface to the file
should be:

— void access_file(void)

— void release_file(void)

* The access_file() function should block until the file is

available, and the release_file() function should wake up
any necessary waiting threads.

4/23/13

Problem Solution

pthread_mutex_t loc
pthread_cond_t con
int max_sum = n;

int current_sum = 0;

void access_file(void) {
pthread_mutex_lock(&lock);
while (current_sum + thread_number > max_sum) {
pthread_cond_wait(&cond, &lock);

current_sum += thread_number;
pthread_mutex_unlock(&lock);

}

void release_file(void) {
pthread_mutex_lock(&lock);
current_sum -= thread_number;
pthread_cond_broadcast(&cond);
pthread_mutex_unlock(&lock);

}

4/23/13

