
1

4/30/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 1

CS 537
Lecture 19
Deadlock

4/30/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 2

Testing for deadlock

•  Steps
–  Collect “process state” and use it to build a graph

•  Ask each process “are you waiting for anything”?
•  Put an edge in the graph if so

–  We need to do this in a single instant of time, not while
things might be changing

•  Now need a way to test for cycles in our graph

4/30/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 3

Testing for deadlock

•  One way to find cycles
–  Look for a node with no outgoing edges
–  Erase this node, and also erase any edges coming into it

•  Idea: This was a process people might have been waiting for,
but it wasn’t waiting for anything else

–  If (and only if) the graph has no cycles, we’ll eventually be
able to erase the whole graph!

•  This is called a graph reduction algorithm

4/30/13 © 2005 Gribble, Lazowska, Levy 4

Resource allocation graph with no cycle

Silberschatz, Galvin and Gagne ©2002

What would
cause a
deadlock?

2

4/30/13 © 2005 Gribble, Lazowska, Levy 5

Resource allocation graph with a deadlock

Silberschatz, Galvin and Gagne ©2002 4/30/13 © 2005 Gribble, Lazowska, Levy 6

Resource allocation graph with a cycle
but no deadlock

Silberschatz, Galvin and Gagne ©2002

4/30/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 7

Some questions you might ask
•  If a system is deadlocked, could this go away?

–  No, unless someone kills one of the threads or something causes a
process to release a resource

–  Many real systems put time limits on “waiting” precisely for this
reason. When a process gets a timeout exception, it gives up
waiting and this also can eliminate the deadlock

–  But that process may be forced to terminate itself because often, if
a process can’t get what it needs, there are no other options
available!

4/30/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 8

Some questions you might ask

•  Suppose a system isn’t deadlocked at time T.
•  Can we assume it will still be free of deadlock at time

T+1?
–  No, because the very next thing it might do is to run some

process that will request a resource…
… establishing a cyclic wait
… and causing deadlock

3

Problem 1: can it deadlock?
Process 0: Process 1:

lock1.acquire(); lock1.acquire();
lock2.acquire(); lock2.acquire();
lock1.release(); lock1.release();
lock2.release(); lock2.release();

4/30/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 9

Problem 2: can it deadlock?
Process 0: Process 1:

lock1.acquire(); lock2.acquire();
lock2.acquire(); lock1.acquire();
lock1.release(); lock1.release();
lock2.release(); lock2.release();

4/30/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 10

Problem 3: can it deadlock?

Process 0: Process 1:

lock1.acquire(); lock2.acquire();
lock2.acquire(); lock2.release();
lock1.release(); lock1.acquire();
lock2.release(); lock1.release();

4/30/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 11 4/30/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift 12

Dining Philosophers
•  Problem Statement:

–  N Philosophers sitting at a round table
–  Each philosopher shares a fork with neighbor
–  Each philosopher must have both forks to eat
–  Neighbors can’t eat simultaneously
–  Philosophers alternate between thinking and eating

•  Each philosopher/thread i runs following code:
while (1) {!
!think();!
!take_forks(i);!
!eat();!
!put_forks(i);!

}!!

4

4/30/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 13

Dining Philosophers: Attempt #1
•  Two neighbors can’t use fork at same time
•  Must test if fork is there and grab it atomically

–  Represent each fork with a semaphore
–  Grab right fork then left fork

•  Code for 5 philosophers:
sem_t fork[5]; // Initialize each to 1!
take_forks(int i) {!
!wait(&fork[i]);!
!wait(&fork[(i+1)%5]);!

}!
put_forks(int i) {!
!signal(&fork[i]);!
!signal(&fork[(i+1)%5]);!

}!
•  What is wrong with this solution???!

4/30/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 14

Dining Philosophers: Attempt #2
•  Approach

–  Grab lower-numbered fork first, then higher-numbered
•  Code for 5 philosophers:
•  sem_t fork[5]; // Initialize to 1!

take_forks(int i) {!
!if (i < 4) {!
! !wait(&fork[i]);!
! !wait(&fork[i+1]);!
!} else {!
! !wait(&fork[0]);!
! !wait(&fork[4]);!

}!
! !!

•  What is wrong with this solution???!

4/30/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 15

Dining Philosophers:
How to Approach

•  Guarantee two goals
–  Safety: Ensure nothing bad happens (don’t violate constraints of

problem)
–  Liveness: Ensure something good happens when it can (make as

much progress as possible)
•  Introduce state variable for each philosopher i

–  state[i] = THINKING, HUNGRY, or EATING!
•  Safety: No two adjacent philosophers eat simultaneously

–  for all i: !(state[i]==EATING && state[i+1%5]==EATING)!

•  Liveness: Not the case that a philosopher is hungry and his
neighbors are not eating
–  for all i: !(state[i]==HUNGRY &&  

(state[i+4%5]!=EATING && state[i+1%5]!=EATING))!

4/30/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 16

Dining Philosophers: Solution
sem_t mayEat[5]; // how to initialize?!
sem_t mutex; // how to init?!
int state[5] = {THINKING};!
take_forks(int i) {!

!wait(&mutex); // enter critical section!
!state[i] = HUNGRY;!
!testSafetyAndLiveness(i); // check if I can run!
!signal(&mutex); // exit critical section!
!wait(&mayEat[i]);!

}!
put_forks(int i) {!

!wait(&mutex); // enter critical section!
!state[i] = THINKING;!
!test(i+1 %5); // check if neighbor can run now!
!test(i+4 %5);!
!signal(&mutex); // exit critical section!

}!
testSafetyAndLiveness(int i) {!

!if (state[i]==HUNGRY && state[i+4%5]!=EATING&&state[i+1%5]!=EATING) {!
! !state[i] = EATING;!
! !signal(&mayEat[i]);!
!}!

}!

