
5/6/13

1

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 1

CS 537
Lecture 22

Distributed File Systems

Michael Swift

2

Distributed File Systems
•  Goal: access your data through normal file system

APIs but store on some other machine
–  Sharing/collaboration with other people
–  Reliability via common backup
–  Efficient use of capacity

•  Issues not common to usual file systems
–  Naming transparency
–  Load balancing
–  Scalability
–  Location and network transparency
–  Fault tolerance

•  We will look at some of these

3

Transfer Model
•  Upload/download Model:

–  Client downloads file, works on it, and writes it back on server
–  Simple and good performance

•  Remote Access Model:
–  File only on server; client sends commands to get work done
–  Provides regular behavior with multiple clients

4

Naming transparency
•  Naming is a mapping from logical to physical objects
•  Client interface may be transparent – should it?

–  Not distinguish between remote and local files
–  /machine/path or mounting remote FS in local hierarchy are

not transparent
–  A transparent DFS hides the location of files in system

•  2 forms of transparency:
–  Location transparency: path gives no hint of file location

•  /mnt/dir1/dir2/x says x is in dir2, but not which machine is
mounted – app does not say which machine or where on the
machine

–  Location independence: move files without changing names
•  Separate naming hierarchy from storage devices hierarchy

5/6/13

2

Naming Schemes
1.  Files named by combination of their host name and

local name; guarantees a unique system-wide name.
–  \\server\share\dir\file on Windows, or http://server/file

2.  Attach remote directories to local directories, giving
the appearance of a coherent directory tree; only
previously mounted remote directories can be
accessed transparently.
–  /mnt/dir1/dir2/file – dir1 refers to a directory on a server

3.  Total integration of the component file systems.
–  A single global name structure spans all the files in the

system.
–  If a server is unavailable, some arbitrary set of directories on

different machines also becomes unavailable.
© 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift 5 6

Caching

•  Keep repeatedly accessed blocks in cache
–  Improves performance of further accesses

•  How it works:
–  If needed block not in cache, it is fetched and cached
–  Accesses performed on local copy
–  One master file copy on server, other copies distributed in DFS

•  Where to cache?
–  Cliient Disk/FS: Pros: larger, data present locally on recovery
–  Client Memory: Pros: diskless workstations, quicker data access,
–  Servers: memory

Cache Update Policy
•  Write-through – write data through to disk as soon as they are

placed on any cache.
–  Reliable, but poor performance.

•  Delayed-write – modifications written to the cache and then
written through to the server later. Write accesses complete
quickly; some data may be overwritten before they are written
back, and so need never be written at all.
–  Poor reliability; unwritten data will be lost whenever a user machine

crashes.
–  Variation – scan cache at regular intervals and flush blocks that

have been modified since the last scan.
–  Variation – write-on-close, writes data back to the server . Best for

files that are open for long periods and frequently modified.

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 7

Cache Consistency
•  Is locally cached copy of the data consistent with the

master copy?
–  What happens if another client modifies a file you are

caching?

•  Client-initiated approach
–  Client initiates a validity check. (when?)
–  Server checks whether the local data are consistent with the

master copy.

•  Server-initiated approach
–  Server records, for each client, the (parts of) files it caches.
–  When server detects a potential inconsistency, it must reac

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 8

5/6/13

3

9

Network File System (NFS)
•  Developed by Sun Microsystems in 1984

–  Used to join FSes on multiple computers as one logical
whole

•  Used commonly today with UNIX systems
•  Assumptions

–  Allows arbitrary collection of users to share a file system
–  Machines can be clients and servers at the same time

•  Architecture:
–  A server exports one or more of its directories to remote

clients
–  Clients access exported directories by mounting them

•  The contents are then accessed as if they were local

10

Example

5/6/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 11

NFS
•  Naming:

–  Files in NFS may have a different name on every client
based on where the volume is mounted

–  A common name space can be achieved by mounting the
same set of servers in the same place on every client

•  Is the location transparent or location independent?

5/6/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 12

Sidebar: Remote Procedure Call
•  Basic problem when dealing with machine across a

network: how do you write the code to communicate?
•  Option 1: messages

–  Programmer copies message into an array of bytes, “sends”
to other computer, “receives” an array of bytes in response
at some point

•  Option 2: RPC
–  Make a procedure call that executes on the other side
–  Tool generates code to copy arguments into a message,

send data, unpack data, call server code, copy result into a
message, send back, receive reply, and return to caller

5/6/13

4

13

NFS Protocol
•  Supports directory and file access via remote

procedure calls (RPCs)
•  All UNIX system calls supported other than open &

close
•  Open and close are intentionally not supported

–  For a read, client sends lookup message to server
–  Server looks up file and returns handle
–  Unlike open, lookup does not copy info in internal system

tables
–  Subsequently, read contains file handle, offset and num

bytes
–  Each message is self-contained

•  Pros: server is stateless, i.e. no state about open files
•  Cons: Locking is difficult, no concurrency control

14

NFS Client Implementation
•  Three main layers:
•  System call layer:

–  Handles calls like open, read and close
•  Virtual File System Layer:

–  Maintains table with one entry (v-node) for each open file
–  v-nodes indicate if file is local or remote

•  If remote it has enough info to access them
•  For local files, FS and i-node are recorded

•  NFS Service Layer:
–  This lowest layer implements the NFS protocol
–  Makes RPCs for various operations to NFS server

15

NFS Layer Structure

16

Cache coherency
•  Clients cache file attributes and data

–  If two clients cache the same data, cache coherency is lost
–  Modifications by one client may not be seen by the other

•  Solutions:
–  Each cache block has a timer (3-30 sec)

•  Entry is discarded when timer expires
–  On open of cached file, its last modify time on server is checked

•  If cached copy is old, it is discarded
–  Every 30 sec, cache time expires

•  All dirty blocks are written back to the server

•  Impact:
–  One client can modify data, another client may no see it for a while,

but not forever.
–  New files not visible for 30 seconds

5/6/13

5

5/6/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 17

Andrew File System (AFS)
•  Developed at CMU to support all of its student

computing.
•  Consists of workstation clients and dedicated file

server machines.
•  Workstations have local disks, used to cache files

being used locally (originally whole files, now 64K file
chunks).

•  Andrew has a single name space -- your files have
the same names everywhere in the world.

18

AFS Overview
•  Based on the upload/download model

–  Clients download and cache files
–  Server keeps track of clients that cache the file
–  Clients upload files at end of session

•  Whole file caching is central idea behind AFS
–  Download whole file first time you open it
–  Upload whole file when you modify it

•  AFS servers are stateful
–  Keep track of clients that have cached files
–  Recall files that have been modified

19

AFS Details
•  Has dedicated server machines
•  Clients have partitioned name space:

–  Local name space and shared name space
–  Cluster of dedicated AFS servers present shared name

space

•  AFS file name works anywhere:
–  /afs/cs.wisc.edu/u/s/w/swift
–  Names are location transparent and independent

•  You don’t know what server has files, nor where on that server.

20

AFS: Operations and Consistency

•  AFS caches entire files from servers
–  Client interacts with servers only during open and close

•  OS on client intercepts calls, and passes it to AFS
service on client

•  AFS service is a client process that caches files from
servers
–  AFS service contacts AFS server only on open and close

•  Does not contact if file is already in the cache, and not
invalidated

–  Reads and writes bypass AFS service and go right to file cached
in local file system.

5/6/13

6

5/6/13 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 21

AFS Caching and Consistency
•  Need for scaling led to reduction of client-server message traffic.
•  Once a file is cached, all operations are performed locally.

–  Cache is on disk, so normal FS and FS operations work here
•  On close, if the file is modified, it is replaced on the server.

–  What happens when multiple clients share a file?
•  The client assumes that its cache is up to date, unless it

receives a callback message from the server saying otherwise.
On file open, if the client has received a callback on the file, it
must fetch a new copy; otherwise it uses its locally-cached
copy.
–  How does this compare to NFS?

•  When are updates visible?
•  What happens if two clients modify the file at the same

time?

AFS Name lookups
•  Looking up file path names is slow

–  Lots of searching directories and

•  AFS offloads problem to client:
–  Client reads directory contents

•  Name, File ID (like inode number)
–  Client scans directory for name
–  Client opens file on directory by File ID

•  Performance:
–  Slower than having server to lookup directly – more data

back and forth
–  Supports more clients on a single server than having server

do lookup

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 22

23

Summary
•  NFS:

–  Simple distributed file system protocol. No open/close
–  Stateless server

•  Has problems with cache consistency, locking protocol

•  AFS:
–  More complicated distributed file system protocol
–  Stateful server

•  session semantics: consistency on close

