
1/22/19

1

CS642: 
Computer Security

Professor Swift
http://www.cs.wisc.edu/~swift/

swift at cs dot wisc dot edu

University of Wisconsin CS 642

Introduction

University of Wisconsin CS 642

Computer security: 
understanding and improving the behavior of
computing technologies in the presence of adversaries

Target/victim
computing 
systems

Attackers Security
engineers

University of Wisconsin CS 642

Computer systems:

• Operating systems
• Networks / Internet
• Web
• Software applications
• Cell Phones
• Internet-of-Things
• …

We will not even attempt to be exhaustive

Who am I?

• UW CS professor for 12 years
• Developer at Microsoft on Windows NT / 

Windows Cairo security team for 8 years
– Authorization
– Authentication

• Researcher on cloud security

University of Wisconsin CS 642

http://www.cs.wisc.edu/~swift/


1/22/19

2

My origins - Commodore CBM 2001 in 
1981

1 MHz, 8-bit processor, 16 KB ram, audio cassette 
tape for storage (50 byte/second, 100 KB capacity)

High school

• Computers the size of a refrigerator

16 bit, 3.6 MHz, 2 MB 
memory, 36 MB disk, 
30 simultaneous users

College

• Intern at Microsoft

After college: Microsoft

• Windows, Windows Windows!



1/22/19

3

My jobs: security

• Implement Kerberos

• Implement access control

University of Wisconsin CS 642

Weird things that happened
• When someone found a way to hack 

in to windows, we had to fix it
– Jujitsu attack: sending network packets 

from a machine back to it could break 
passwords

– L0pht crack: look at network packets 
and break passwords

• Often had to  work weekends to fix 
problems right away

• Claims to fame: 
– NTLM zero-bit encryption
– Gave LM hash key to Jeremy 

Allison/SAMBA

Recent Work

• Cloud side channels
• Attestation

University of Wisconsin CS 642

Security goals
• Confidentiality

– data not leaked
– encryption, access controls

• Integrity
– data not modified
– message integrity checks, access controls

• Authenticity
– data comes from who we think it does
– digital signatures, passwords

• Availability
– services operating when needed
– redundancy

University of Wisconsin CS 642



1/22/19

4

University of Wisconsin CS 642

Adversaries:

• script kiddies
• Criminals
• “hacktivists”
• Dissidents (if you are an oppressive regime) 
• Nation states
• …

Attack mechanisms

• Rogue application
– Malware in app store

• Over the network
– Network packets
– Emails
– Websites

• Inside employee 
– Rogue: Snowden
– Social engineering

• In the network
– AT&T

• Over the air
– Audio channels, Tempest

• Physical devices:
– Stuxnet

• Physical access
– Xerox copiers in Russia
– NSA & Supercomputers

University of Wisconsin CS 642

Anatomy of an example attack in 2011

University of Wisconsin CS 642

http://arstechnica.com/tech-policy/news/2011/02/anonymous-speaks-the-
inside-story-of-the-hbgary-hack.ars/1

Anonymous vs HBGary

University of Wisconsin CS 642

hbgaryfederal.comrootkit.com

Ran by Greg Hoglund,
owner of HBGary / HBGary Federal



1/22/19

5

Anonymous vs HBGary

University of Wisconsin CS 642

hbgaryfederal.com

Runs a CMS

http://www.hbgaryfederal.com/pages.php?pageNav=2&page=27

usernames, password hashes

h = Hash(pw)

Given h, recover pw by brute force attack
if pw is “simple” enough

SQL injection attack

Aaron Barr’s (CEO of HBGary) and Ted Vera (COO) had
passwords only 6 digits, lower case letters and numbers

JohntheRipper easily inverts hashes of such passwords
http://www.openwall.com/john/

University of Wisconsin CS 642

Anonymous vs HBGary

University of Wisconsin CS 642

hbgaryfederal.com

Runs a CMS

login: ted
password: tedv12

This gave user level account

Exploit a privilege escalation vulnerability
in the glibc linker on Linux

http://seclists.org/fulldisclosure/2010/Oct/257

Now have root access on hbgaryfederal.com (and more?) 
Delete gigabytes of data, grab emails, take down phone system

Anonymous vs HBGary

University of Wisconsin CS 642

google apps

Runs a CMS

login: aaron
password:  aaro34

This gave access to Aaron’s gmail account,
since he used same password here

Aaron was administrator for companies’ email
on google apps

Read Greg Hoglund’s emails



1/22/19

6

Anonymous vs HBGary

University of Wisconsin CS 642

From: Greg
To: Jussi
Subject: need to ssh into rootkit
im in europe and need to ssh into the server. can you drop open up
firewall and allow ssh through port 59022 or something vague?
and is our root password still 88j4bb3rw0cky88 or did we change to
88Scr3am3r88 ?
thanks

“social engineering”

rootkit.com

Recap:

• SQL injection
• Password cracking
• Privilege escalation via setuid program
• Social engineering

University of Wisconsin CS 642

Web security

Crypto / OS 
security

Low-level 
software security

You are on your 
own

Themes in this course

• Understanding threats
• Security evaluations (thinking like an attacker)
• Defensive technologies
• Advancing our technical skills
– x86 assembly, low-level programming
– networking
– cryptography
– web security

University of Wisconsin CS 642

Topic areas

• Low-level software security
• Processor security
• Network security
• Web
• Cryptography 
• What else?

University of Wisconsin CS 642



1/22/19

7

We will learn how systems break

University of Wisconsin CS 642

Security currently is an arms race between attack 
and defense

Security engineers must understand attack vectors
in order to improve systems’ security

Security Mindset 
• Thinking critically about designs, challenging 

assumptions 
• Being curious, thinking like an attacker 
• “That new product X sounds awesome, I can’t wait to 

use it!” versus “That new product X sounds cool, but I 
wonder what would happen if someone did Y with it...” 

• Why it’s important
– Technology changes, so learning to think like a security 

person is more important than learning specifics of today 
– Will help you design better systems/solutions

University of Wisconsin CS 642

What do you see?

University of Wisconsin CS 642

What do you see?

University of Wisconsin CS 642



1/22/19

8

Security: not just for PCs

University of Wisconsin CS 642

“The price of greatness is responsibility”
Winston Churchill

University of Wisconsin CS 642

Grey hat:
sometimes criminal, or at least “bending the law”

Black hat:  
cracker, a criminal

White hat:
ethical hacker, working within legal framework to 
perform security evaluations

Being a malicious script kiddie is easy … 
and stupid

• Metasploit
– All-in-one penetration testing tool
– Easy-to-use exploit & payload libraries

University of Wisconsin CS 642

Reverse engineering and Zero days

University of Wisconsin CS 642

The Legitimate Vulnerability Market. Inside the Secretive World of 0-day Exploit Sales
by Charlie Miller



1/22/19

9

The law and ethics

• Abuse of security vulnerabilities 
– is against University of Wisconsin policies. 

I will report anyone who “crosses the line” to the 
relevant university authorities
http://www.cio.wisc.edu/policies.aspx

– runs afoul of various laws. 
• Abuse of security vulnerabilities is unethical
– Think about what you’re doing and the price it has 

on yourself, the victims, and society in general

University of Wisconsin CS 642

Rules of thumb

• When in doubt … don’t. 
– Come ask me

• You must have explicit (written) permission 
from a system owner before performing any 
penetration testing
– Homework assignments will generally be on your 

own system
–We will give explicit permission to hand us exploits 

for us to test

University of Wisconsin CS 642

Responsible disclosure

• Full disclosure means revealing everything 
about a vulnerability including an example 
exploit

• Responsible disclosure (generally) refers to 
ensuring potential victims are aware of 
vulnerabilities before going public

University of Wisconsin CS 642

Administrative stuff

• http://pages.cs.wisc.edu/~cs642-1

• Will use email list for announcements
• Piazza for discussion, bonus information
• Canvas for posting grades

• Homework assignments (50%)
• Midterm (20%)

• Final (20%)
• Participation

University of Wisconsin CS 642

http://pages.cs.wisc.edu/~rist/642-fall-2011/


1/22/19

10

Homeworks

• Some problem sets will allow teams of up to 2
• Collaboration policy:
– no collaboration with people outside team
– using the web for general information is 

encouraged
– Googling for answers to questions is not
– Cheating will be reported to university authorities

• Need access to virtualization software: 
VirtualBox: https://www.virtualbox.org/

University of Wisconsin CS 642

Details

• Exams: 2 Midterms
• Participation:
– Ask questions in class
– Come to office hours
– Present an attack (up to 5 minutes)

• Stuxnet
• Melissa
• Equifax
• Snowden leak tools

University of Wisconsin CS 642

Participation

• Speak up in class 
• No need to read all papers for a lecture in 

detail, but:
– Be aware of topic areas
– Read in depth selectively later

University of Wisconsin CS 642

A warm up: security principles

University of Wisconsin CS 642

Saltzer and Schroeder. 
The protection of information in computer systems. 
Proceedings of the IEEE, 1975

https://www.virtualbox.org/


1/22/19

11

Errors, bugs, failures

University of Wisconsin CS 642

Networks: composed of hardware whose behavior is 
determined by software (roughly...) 

Errors, bugs, failures

• Applications run on operating systems 

University of Wisconsin CS 642

Errors, bugs, failures

• Networks: composed of hardware whose behavior is determined by 
software (roughly...) 

• Applications run on operating systems 
• interoperate through protocols 

University of Wisconsin CS 642

Hardware, Software, Protocols

• Designed by humans 
• Not perfect! 

University of Wisconsin CS 642



1/22/19

12

Security Bugs, Errors, Failures

• A security error is made by a human 
• Aa consequence, a security bug is introduced 
– A security bug is also called a “vulnerability” 
–When the bug is triggered (or “exploited”) it 

generates a security failure 
– The security of a system is compromised... 

University of Wisconsin CS 642

Vijaychidambaram

University of Wisconsin CS 642

1/22/19
© 2004-2007 Ed Lazowska, Hank Levy, 

Andrea and Remzi Arpaci-Dussea, Michael 
Swift

47

The root of it All

• Trust: when should you trust things?
– In the real world:

• When you know someone personally
• When someone you know vouches for it
• When it looks official or is in an official place

– On the Internet:
• When it comes from a believable web site?
• When it is digitally signed?

• Case study: Unix

Trusting Trust

Example: Thompson’s Turing Award 
•  How to build an undetectable Trojan Horse that lives forever! 

1.  Modify login to accept login “Ken” without a password and to grant root 
permission. This code would be obvious, if left in the source code, so, 
replace it with a trigger (some identifiable, but innocuous comment). 

4/25/13 CS161 Spring 2013 19 

if (strcmp(user, “Ken”))  != 0) { 
    … check password here … 
} 

/* Check for valid password. */ 
 … check password here … 

2.  Modify the compiler so that when it compiles login and sees the trigger, it 
adds the Ken-checking code. Since this is also obvious; replace that. 

if (strcmp(comment, 
     “Check for valid password.”) 
    == 0) { 

… Add Ken-check code ... 
} 

/* 
 * Is this a comment? 
 * If so, ignore. 
.*/ 

In login 

In compiler 

1/22/19
© 2004-2007 Ed Lazowska, Hank Levy, 

Andrea and Remzi Arpaci-Dussea, Michael 
Swift

48



1/22/19

13

Trusting Trust (2)
Thompson (continued) 

4/25/13 CS161 Spring 2013 20 

4.  Now, modify the compiler AGAIN to recognize the second trigger (“Is this 
a comment?”). Add the code that recognizes the comment, but replaces it 
with the code that checks for the comment in login. 

5.  Compile this (second) hacked version of the compiler. 
6.  Now, remove the source code from the compiler. 
7.  You are left with an executable that will always generate a buggy compiler, 

as long as a particular comment in the compiler source code doesn’t go 
away. 

8.  What is even more remarkable is that this bug can persist, even if you port 
the compiler to a new backend! (It’s all in the front end parsing.) 

•  How do you know this sort of bug isn’t in your 
compiler today!? 

1/22/19
© 2004-2007 Ed Lazowska, Hank Levy, 

Andrea and Remzi Arpaci-Dussea, Michael 
Swift

49

Security Design Principles

University of Wisconsin CS 642

1) Economy of mechanism
2) Fail-safe defaults
3) Complete mediation
4) Open design
5) Separation of privilege
6) Least privilege
7) Least common mechanism
8) Psychological acceptability

Security Design Principles

• Saltzer &Schroeder, 1975, as part of Multics

University of Wisconsin CS 642

Economy of mechanism

University of Wisconsin CS 642



1/22/19

14

Fail-safe defaults

University of Wisconsin CS 642

isAdmin = true;
try {

codeWhichMayFail();
isAdmin = isUserInRole( “Administrator” );

}
catch (Exception ex) {

log.write( ex.toString() );
}

(Example from https://www.owasp.org/index.php/Secure_Coding_Principles)

Complete mediation

University of Wisconsin CS 642

Open design 
(avoid “security by obscurity”)

University of Wisconsin CS 642

Separation of privilege

University of Wisconsin CS 642



1/22/19

15

Least privilege

University of Wisconsin CS 642

This%program
can%delete%any
file%you%can.

(Courtesy of UCB CS161 slides)

Least common mechanism
(isolation)

University of Wisconsin CS 642

Psychological acceptability
(consider human factors)

University of Wisconsin CS 642

Principles from 1970’s

• Do you think they are relevant today?
• A bit… abstract
• Recur over and over again

University of Wisconsin CS 642


