More Low-level software
vulnerability protection
mechanisms

CS642.
Computer Security

Spring 2019

University of Wisconsin CS 642

DNSpionage

e Attack: on UEA, Lebanon

— Redirect domain name lookup (e.g.,
www.google.com) to attacker server

— Redirect user traffic to attacker machines
— Capture email passwords

— Capture encryption certificates

— Decrypt intercepted email

http://www.google.com/

DNS hijacking

* |dea: change mapping of domain names to IP
addresses
— These are stored in a server without much protection

— Broke into Nethod domain name registry

* Obtain SSL/TLS certificates for these domains

— Means clients will believe they are connecting
securely

— Means certificate authorities failed

* How normally prevent? DNSSEC puts digital
signature on domain names
— But SSL/TLS certificates were used to spoof DNSSEC

How can we help prevent exploitation of buffer
overflows and other control flow hijacking?

Non-executable memory pages

Return-into-libc exploits, Return-oriented
programming

Address space layout randomization

StackGuard, StackShield

Software fault isolation

University of Wisconsin CS 642

Process memory layout

unused space

text .data .bss heap x & stack Env.
é b

Low memory

High memory

addresses addresses
text: heap:
machine code of executable dynamic variables
.data: stack:
global initialized variables local variables, track func calls
.bss: Env:
“below stack section” environment variables,

global uninitialized variables arguments to program

Typical return ptr overwrite exploit

unused space

l

text .data

.bss

heap x & stack

Env.

Low memory
addresses

/

/

High memory

@

l - addresses
values ptr
I
name EBP EIP templ temp?2 cater
local vars

Low memory
addresses

High memory
addresses

Protecting the stack

local | con | Eip | param1 | €T
varl local vars

Low memory T
addresses

High memory

Can we protect the return address addresses
from being overwritten?

Two approaches:
e Detect manipulation (and then fail safe)
* Prevent it completely

Detection: stack canaries

local ||
canary | EBP EIP Paraml caner
varl local vars

Low memory
addresses

High memory
addresses

Canary value can be:
 Random value (choose once for whole process)
 NULL bytes / EOF / etc. (string functions won’t copy past canary)

On end of function, check that canary is correct, if not fail safe

Detection: stack canaries

local |
canary | EBP EIP Paraml cater
varl local vars

Low memory
addresses

High memory
addresses
StackGuard:

* GCC extension that adds runtime canary checking
8% overhead on Apache

ProPolice:

 Modifies how canaries inserted

* Adds protection for registers

e Sorts variables so arrays are highest in stack

Detection: stack canaries

local |
canary | EBP EIP Paraml caner
varl local vars

Low memory
addresses

High memory
addresses

Discussion: How would you get around it?

http://www.phrack.org/issues.html?issue=56&id=5

Detection: copying values to safe
location

local | con | Eip | param1 | €T
varl local vars

Low memory T :
addresses High memory
Make a copy addresses
StackShield:

* Function call: copy return address to a safe location
(beginning of .data)
* Check if stack value is different on function exit

Discussion: How would you get around this?

Prevention

local | con | Eip | param1 | €T
varl local vars

Low memory T T
addresses

High memory
Store control flow addresses
information elsewhere

StackGhost:

* Encrypting the return address
e XOR with random value on function entrance
* XOR with same value on function exit

* Per-kernel XOR vs. Per-process XOR

* Return address stack

Confinement (sand boxing)

e All the mechanisms thus far are
circumventable

* Can we at least confine code that is potentially
vulnerable so it doesn’t cause harm?

Simple example is chroot

chroot /tmp/guest
su guest

Now all file access are prepended with /tmp/guest

Attempts to open

O en o etC aSSWd”’ llrll
P (/ /p) /tmp/guest/etc/paSSWd

Limitation is that all needed files must be inside chroot jail

Limitation: network access not inhibited

Escaping jails

Attempts to open

(l.. N t d)” o7
open(“./../etc/passw) /tmp/guest/../../etc/passwd

chroot should only be executable by root

create /aaa/etc/passwd

create /aaa/etc/sudoers
chroot /aaa
sudo ...

System call interposition

* Malicious code must make system calls in
* So monitor system calls!

order to do bad things

system call |

user
land

kernel l Ok / not ok

.Ja n US Wagner et al.

Application

process J{ process
process

S
o .
<
3
Q
2
@

-

‘ ----A— ------------

o o 2

B o 8 S

B N g

e & B & Bkt z S

Ly}

R g & 3

_* - < User Space

Kernel Space

:_.“_‘_Y“_ open("foo") L P
- System Call Entry - mod_janus

Deny

result

[Kemel Proper Allow

open("£oo0")

Figure 1. System Call Interposition in Janus

Diagram
from
Garfinkel
2003

Software-fault isolation example:

Google Native Client

Goal: run native code from a web browser safely

Examples are Quake and XaoS ported over

Browser

User Interface
HTML and
JavaScript

Figure 1: Hypothetical NaCl-based application for editing and

SRPC
NPAPI

(e,

imglib.nexe

A

v
service runtime

sharing photos. Untrusted modules have a grey background.

From Yee
et al. 2009

Software-fault isolation example:
Google Native Client

Inner sandbox
* require code to abide by alignment and structure rules,
allowing disassembly.
Instruction on 16-byte boundaries (no jump inside instruction
* Fail if any disallowed instructions
e All user addresses in a range
* No write outside range

User data ‘

Validator quickly checks that a binary abides by these rules

Software-fault isolation example:
Google Native Client
Outer sandbox

» system call interposition to monitor
e similar to Janus / ptrace

Native client spec perf

static | aligned | NaCl | increase
ammp 200 203 203 1.5%
art 46.3 48.7 | 47.2 1.9%
bzip2 103 104 104 1.9%
crafty 113 124 127 12%
eon 79.2 76.9 82.6 4.3%
equake 62.3 62.9 | 625 0.3%
gap 63.9 64.0 | 654 2.4%
gce 52.3 54.7 57.0 9.0%
gzip 149 149 148 -0.7%
mcf 65.7 65.7 | 66.2 0.8%
mesa 87.4 89.8 | 925 5.8%
parser 126 128 128 1.6%
perlbmk | 94.0 99.3 106 13%
twolf 154 163 165 7.1%
vortex 112 116 124 11%
Vpr 90.7 88.4 | 89.6 -1.2%

Table 4: SPEC2000 performance. Execution time is in seconds. All
binaries are statically linked.

Native client Quake perf

Run # Native Client | Linux Executable
1 143.2 142.9
2 143.6 143.4
3 144.2 143.5
Average | 143.7 143.3

Table 8: Quake performance comparison. Numbers are in frames
per second.

More sandboxing: virtualization

 Modern virtual machines (VMs) often used for
sandboxing

App App

NSA NetTop
Guest OS H Guest OS

VA\Y;

Host OS

Hardware

More sandboxing: virtualization

* Malicious use of virtualization: blue pill virus

Malicious VM monitor

Hardware

Discussion:
state of low level software security

* Do you think Native Client is fool proof?
 What about VM-based sandboxing?

* How does all this make you feel?

