Low-level software
vulnerability protection
mechanisms

CS642.
Computer Security

Spring 2019

University of Wisconsin CS 642

How can we help prevent exploitation of buffer
overflows and other control flow hijacking?

Non-executable memory pages

Return-into-libc exploits, Return-oriented
programming

Address space layout randomization
StackGuard, StackShield

Software fault isolation

University of Wisconsin CS 642

Process memory layout

unused space

text .data .bss heap x & stack Env.
é b

Low memory

High memory

addresses addresses
text: heap:
machine code of executable dynamic variables
.data: stack:
global initialized variables local variables, track func calls
.bss: Env:
“below stack section” environment variables,

global uninitialized variables arguments to program

Typical return ptr overwrite exploit

unused space

l

heap x & stack

text .data .bss Env.
Low memory / ngh nemory
addresses l - addresses
/ values ptr
I
name EBP EIP templ temp?2 cater
local vars

Low memory

addresses \Why should the machine interpret

stack data as instructions?

High memory
addresses

WAX (W xor X)

* The idea: mark memory page as either
— Writable or Executable (not both)

e Specifically: make heap and stack non-
executable

| t templ temp?2 Caler
MaLLCS ptr P P local vars

Low memory
addresses

High memory
addresses

WAX (W xor X)

e X86-64: NX bit (Non-Executable)

ARMv6: XN bit (eXecute Never)

— Extra bit in each page table entry
— Processor refuses to execute code if bit =1
— Mark heap and stack segments as such

| templ temp?2 Caler
CEILISS ptr P P local vars

Low memory
addresses

High memory
addresses

Will WAX stop:

AlephOne’s stack overflow exploit? Yes

Stack smash that overwrites pointer to

point at shell code in Heap or Env variable? Yes

Heap overflow with same shell location? Yes

Double free with same shell location? Yes

Limitations of WAX

Breaking compatibility
* GCC stack trampolines (calling conventions,
nested functions)

e Just-in-time (JIT) compilation using heap

 Windows Active Template library puts
trampoline code on stack

Exploits designed to only run existing code

Return-into-libc exploits

libc is standard C library, included in all
processes

e system() --- execute commands on system

(gdb) b mMain

Breakpoint 1 at Bx88484a8B: file sploitl.c, line 15.

btarting program: Zhome/user/ppl/sploits/sploitl

lBreakpoint 1, main () at sploitl.c:15

15 args[B]1 = TARGET;

(gdb) p system
{<text wvariable,

no debug info>} Bxb7ecfl188 <system>

Return-into-libc exploits

Overwrite EIP with address of system() function
junk2 just some filler: returned to after system call
first argument to system() is ptr to “/bin/sh”

addr of | junk | addr of
system() | 2 | “/bin/sh”

I
& name EBP EIP templ temp?2 cater
local vars

Low memory
addresses

junk

High memory
addresses

Return-into-libc exploits

This simple exploit has a few deficiencies (for attacker):
- Crashes after exiting called /bin/sh (easy to fix with exit())
-Note: system() drops privileges by default

addr of addr of addr of | addr of | addr of | addr of

T printf execl “%3\Sn” | “./wrap” | “./wrap” | HERE
wrap.c: \‘ / //
maiE() { execl(“./wrap”, “./wrap”, 0) Writes
: 0 here
setuid(0);
setgid(0); printf(“%3Sn”, ...)
system(“bin/sh”); %3n means “write number of bytes in format

) string up to the format token into third parameter”

Return-into-libc exploits

These exploits only execute instructions marked executable

WAX cannot stop such an attack

junk

addr of addr of addr of | addr of | addr of | addr of

printf execl “%3\Sn” | “./wrap” | “./wrap” | HERE
wrap.c: \‘ / /'/'
maiE() { execl(“./wrap”, “./wrap”, 0) Writes
. 0 here
setuid(0);
setgid(0); printf(“%3%n”, ...)
system(“bin/sh”); %3n means “write number of bytes in format

}

string up to the format token into third parameter”

Return-into-libc exploits

Return-into-libc may seem limited:

- Only useful for calling libc functions

- Okay in last example, but not always sufficient
- Before W”X, exploit could run arbitrary code

Can we not inject any malicious code and yet
have an exploit that runs arbitrary code?

Return-oriented programming (ROP)

Second return-into-libc exploit:
self-modifying exploit buffer to call a sequence of libc calls

Logical extreme:
chain together a long sequence of calls to code

But we want arbitrary code, not sequence of libc calls:
chain together a long sequence of calls to code snippets

Return-oriented programming (ROP)

Oxdeadbeef

%esp

™ pop %edx
ret

Figure 2: Load the constant Oxdeadbeef into %edx.

From Shacham “The Geometry of Innocent Flesh on the Bone...” 2007

If this is on stack and (*) is return pointer after buffer overflow, then
the result will be loading Oxdeadbeef into edx register

Return-oriented programming (ROP)

’ ™ movl 64(%eax), %eax
. ret
. . ™ pop %eax
Joesp — ret
Oxdeadbeef
+ 64)

Figure 3: Load a word in memory into %eax.

From Shacham “The Geometry of Innocent Flesh on the Bone...” 2007

From

Shacham

“The Geometry of
Innocent Flesh on
the Bone...” 2007

+ 24

/sh\0

/bin

(word to zero)

-

* lcall %gs:0x10(,0)
ret

™ pop %ecx
pop %edx
ret

* pop %ebx

et
* add %ch, %al
ret

>

%esp

0x0b0b0ObOb

™ movl %eax, 24(%edx)
ret

* pop %ecx
pop %edx

[0 0
xor %eax, %eax ret

ret

Figure 16: Shellcode.

Example

e Switch to pdf...

ROP where do we get code snippets?

c/

45

d4

movl $0x0000000 |, -44(%ebp) Ol
00

00

00

f7

c/

07

test $0x00000007, %edi 00
00

00

of

] 95 } xchg %ebp, %eax
setnzb -6 (%ebp) 45) inc%ebp

c3 } ret

add %dh, %bh

N~

movl $0x0F000000, (%edi)

Buchanan et al., Blackhat 2008

WAX wrapup

WAX does not prevent arbitrary code execution,
but does make it harder!

What else can we do?

Address space layout randomization (ASLR)

dynamically linked libraries (libc) go in here

o~

text

.data

.bss

heap x & stack

Env.

Low memory
addresses

— A

High memory
addresses

Address space layout randomization (ASLR)

dynamically linked libraries (libc) go in here

o~

text .data .bss heap x

& stack Env.

_
random random
16-bit 16-bit
offset offset

PaX implementation for example:

« Randomize offsets of three areas

16 bits, 16 bits, 24 bits of randomness
e Adds unpredictability... but how much?

e

random
24-bit
offset

ASLR Example

Application Run | Application Run 2

Stack
Stack

Heap
Heap

Executable

Library (e.g., user32.dll)

Library (e.g., user32.dl)

Program Memory (abstract) Program Memory (abstract)

Defeating ASLR

WAX not on?
Large nop sled with classic buffer overflow

Use a vulnerability that can be used to leak address information
(e.g., printf arbitrary read)

Leaked address
— Are there APIs that leak an address?

Brute force the address

— All code addresses moved by a single offset
— 21%js not that many things to try on a fast computer

Defeating ASLR

Brute-forcing example from reading “On the effectiveness of
Address Space Layout Randomization” by Shacham et al.

request
>
Apache forks
off child process
to handle request
response
< Apache web server
with Oracle 9 PL/SQL
module

There is a buffer overflow in
module that helps process
request

Defeating ASLR

Brute-forcing example from reading “On the effectiveness of
Address Space Layout Randomization” by Shacham et al.

request
>
top of stack (higher addresses)
0x01010101
0xDEADBEEF
guessed address of usleep()
0xDEADBEEF
64 byvte buffer, now filled with A's
Attacker makes a ‘ . Apache web server
guess of where usleep() : with Oracle 9 PL/SQL
is located in memory bottom of stack (lower addresses) module
Figure 2: Stack after one probe
Failure will crash the child process Success will crash the child process
immediately and therefore kill connection after sleeping for 0x01010101

microseconds and kill connection

ASLR

If on 64-bit architecture, randomization
significantly more effective

Can also randomize more stuff:

* [nstruction set randomization

e per-memory-allocation randomization
e etc.

Protecting the stack

local | con | Eip | param1 | €T
varl local vars

Low memory T
addresses

High memory

Can we protect the return address addresses
from being overwritten?

Two approaches:
e Detect manipulation (and then fail safe)
* Prevent it completely

Detection: stack canaries

local ||
canary | EBP EIP Paraml caner
varl local vars

Low memory
addresses

High memory
addresses

Canary value can be:
 Random value (choose once for whole process)
 NULL bytes / EOF / etc. (string functions won’t copy past canary)

On end of function, check that canary is correct, if not fail safe

Detection: stack canaries

local |
canary | EBP EIP Paraml cater
varl local vars

Low memory
addresses

High memory
addresses
StackGuard:

* GCC extension that adds runtime canary checking
8% overhead on Apache

ProPolice:

 Modifies how canaries inserted

* Adds protection for registers

e Sorts variables so arrays are highest in stack

Detection: stack canaries

local |
canary | EBP EIP Paraml caner
varl local vars

Low memory
addresses

High memory
addresses

Discussion: How would you get around it?

http://www.phrack.org/issues.html?issue=56&id=5

Detection: copying values to safe
location

local | con | Eip | param1 | €T
varl local vars

Low memory T :
addresses High memory
Make a copy addresses
StackShield:

* Function call: copy return address to a safe location
(beginning of .data)
* Check if stack value is different on function exit

Discussion: How would you get around this?

Prevention

local | con | Eip | param1 | €T
varl local vars

Low memory T T
addresses

High memory
Store control flow addresses
information elsewhere

StackGhost:

* Encrypting the return address
e XOR with random value on function entrance
* XOR with same value on function exit

* Per-kernel XOR vs. Per-process XOR

* Return address stack

Confinement (sand boxing)

e All the mechanisms thus far are
circumventable

* Can we at least confine code that is potentially
vulnerable so it doesn’t cause harm?

Simple example is chroot

chroot /tmp/guest
su guest

Now all file access are prepended with /tmp/guest

Attempts to open

O en o etC aSSWd”’ llrll
P (/ /p) /tmp/guest/etc/paSSWd

Limitation is that all needed files must be inside chroot jail

Limitation: network access not inhibited

Escaping jails

Attempts to open

(l.. N t d)” o7
open(“./../etc/passw) /tmp/guest/../../etc/passwd

chroot should only be executable by root

create /aaa/etc/passwd

create /aaa/etc/sudoers
chroot /aaa
sudo ...

System call interposition

* Malicious code must make system calls in
* So monitor system calls!

order to do bad things

system call |

user
land

kernel l Ok / not ok

.Ja n US Wagner et al.

Application

process J{ process
process

S
o .
<
3
Q
2
@

-

‘ ----A— ------------

o o 2

B o 8 S

B N g

e & B & Bkt z S

Ly}

R g & 3

_* - < User Space

Kernel Space

:_.“_‘_Y“_ open("foo") L P
- System Call Entry - mod_janus

Deny

result

[Kemel Proper Allow

open("£oo0")

Figure 1. System Call Interposition in Janus

Diagram
from
Garfinkel
2003

Software-fault isolation example:

Google Native Client

Goal: run native code from a web browser safely

Examples are Quake and XaoS ported over

Browser

User Interface
HTML and
JavaScript

Figure 1: Hypothetical NaCl-based application for editing and

SRPC
NPAPI

(e,

imglib.nexe

A

v
service runtime

sharing photos. Untrusted modules have a grey background.

From Yee
et al. 2009

Software-fault isolation example:
Google Native Client

Inner sandbox
* require code to abide by alignment and structure rules,
allowing disassembly.
Instruction on 16-byte boundaries (no jump inside instruction
* Fail if any disallowed instructions
e All user addresses in a range
* No write outside range

User data ‘

Validator quickly checks that a binary abides by these rules

Software-fault isolation example:
Google Native Client
Outer sandbox

» system call interposition to monitor
e similar to Janus / ptrace

Native client spec perf

static | aligned | NaCl | increase
ammp 200 203 203 1.5%
art 46.3 48.7 | 47.2 1.9%
bzip2 103 104 104 1.9%
crafty 113 124 127 12%
eon 79.2 76.9 82.6 4.3%
equake 62.3 62.9 | 625 0.3%
gap 63.9 64.0 | 654 2.4%
gce 52.3 54.7 57.0 9.0%
gzip 149 149 148 -0.7%
mcf 65.7 65.7 | 66.2 0.8%
mesa 87.4 89.8 | 925 5.8%
parser 126 128 128 1.6%
perlbmk | 94.0 99.3 106 13%
twolf 154 163 165 7.1%
vortex 112 116 124 11%
Vpr 90.7 88.4 | 89.6 -1.2%

Table 4: SPEC2000 performance. Execution time is in seconds. All
binaries are statically linked.

Native client Quake perf

Run # Native Client | Linux Executable
1 143.2 142.9
2 143.6 143.4
3 144.2 143.5
Average | 143.7 143.3

Table 8: Quake performance comparison. Numbers are in frames
per second.

More sandboxing: virtualization

 Modern virtual machines (VMs) often used for
sandboxing

App App

NSA NetTop
Guest OS H Guest OS

VA\Y;

Host OS

Hardware

More sandboxing: virtualization

* Malicious use of virtualization: blue pill virus

Malicious VM monitor

Hardware

Discussion:
state of low level software security

* Do you think Native Client is fool proof?
 What about VM-based sandboxing?

* How does all this make you feel?

