
CS642:
Computer Security

Spring 2019

University of Wisconsin CS 642

Low-level software
vulnerability protection
mechanisms

University of Wisconsin CS 642

How can we help prevent exploitation of buffer

overflows and other control flow hijacking?

StackGuard, StackShield

Address space layout randomization

Non-executable memory pages

Software fault isolation

Return-into-libc exploits, Return-oriented

programming

Process memory layout

.text .data .bss heap stack Env.

.text:
machine code of executable

.data:
global initialized variables

.bss:
“below stack section”
global uninitialized variables

heap:
dynamic variables

stack:
local variables, track func calls

Env:
environment variables,
arguments to program

unused space

Low memory
addresses

High memory
addresses

Typical return ptr overwrite exploit

caller
local vars

Low memory
addresses High memory

addresses

temp2temp1EIPEBPname

values ptr

Why should the machine interpret
stack data as instructions?

.text .data .bss heap stack Env.

unused space

Low memory
addresses

High memory
addresses

W^X (W xor X)
• The idea: mark memory page as either
–Writable or Executable (not both)

• Specifically: make heap and stack non-
executable

caller
local vars

Low memory
addresses High memory

addresses

temp2temp1EIPEBPnamevalues ptr

W^X (W xor X)
• X86-64: NX bit (Non-Executable)

ARMv6: XN bit (eXecute Never)
– Extra bit in each page table entry
– Processor refuses to execute code if bit = 1
–Mark heap and stack segments as such

caller
local vars

Low memory
addresses High memory

addresses

temp2temp1EIPEBPnamevalues ptr

Will W^X stop:

AlephOne’s stack overflow exploit? Yes

Stack smash that overwrites pointer to
point at shell code in Heap or Env variable? Yes

Heap overflow with same shell location? Yes

Double free with same shell location? Yes

Limitations of W^X

Breaking compatibility

• GCC stack trampolines (calling conventions,
nested functions)

• Just-in-time (JIT) compilation using heap

• Windows Active Template library puts
trampoline code on stack

Exploits designed to only run existing code

Return-into-libc exploits

• libc is standard C library, included in all
processes

• system() --- execute commands on system

Return-into-libc exploits

caller
local vars

Low memory
addresses High memory

addresses

temp2temp1EIPEBPname

junk addr of
system()

Overwrite EIP with address of system() function
junk2 just some filler: returned to after system call
first argument to system() is ptr to “/bin/sh”

junk
2

addr of
“/bin/sh”

Return-into-libc exploits

junk addr of
printf

This simple exploit has a few deficiencies (for attacker):
- Crashes after exiting called /bin/sh (easy to fix with exit())
-Note: system() drops privileges by default

addr of
execl

addr of
“%3\$n”

addr of
“./wrap”

addr of
“./wrap”

addr of
HERE

wrap.c :
main() {

setuid(0);
setgid(0);
system(“bin/sh”);

}

printf(“%3$n”, …)
%3n means “write number of bytes in format
string up to the format token into third parameter”

execl(“./wrap”, “./wrap”, 0) Writes
0 here

Return-into-libc exploits

junk addr of
printf

These exploits only execute instructions marked executable

addr of
execl

addr of
“%3\$n”

addr of
“./wrap”

addr of
“./wrap”

addr of
HERE

wrap.c :
main() {

setuid(0);
setgid(0);
system(“bin/sh”);

}

printf(“%3$n”, …)
%3n means “write number of bytes in format
string up to the format token into third parameter”

execl(“./wrap”, “./wrap”, 0) Writes
0 here

W^X cannot stop such an attack

Return-into-libc exploits

Return-into-libc may seem limited:
- Only useful for calling libc functions
- Okay in last example, but not always sufficient
- Before W^X, exploit could run arbitrary code

Can we not inject any malicious code and yet
have an exploit that runs arbitrary code?

Return-oriented programming (ROP)

Second return-into-libc exploit:
self-modifying exploit buffer to call a sequence of libc calls

Logical extreme:
chain together a long sequence of calls to code

But we want arbitrary code, not sequence of libc calls:
chain together a long sequence of calls to code snippets

Return-oriented programming (ROP)

From Shacham “The Geometry of Innocent Flesh on the Bone…” 2007

If this is on stack and (*) is return pointer after buffer overflow, then
the result will be loading 0xdeadbeef into edx register

(*)

Return-oriented programming (ROP)

From Shacham “The Geometry of Innocent Flesh on the Bone…” 2007

From
Shacham
“The Geometry of
Innocent Flesh on

the Bone…” 2007

Example

• Switch to pdf…

ROP where do we get code snippets?

Buchanan et al., Blackhat 2008

ret }

Unintended instructions — ecb_crypt()

c7
45
d4
01
00
00
00
f7
c7
07
00
00
00
0f
95
45
c3

movl $0x00000001, -44(%ebp)

test $0x00000007, %edi

setnzb -61(%ebp)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

⎧

⎪

⎨

⎪

⎩

{

add %dh, %bh

movl $0x0F000000, (%edi)

xchg %ebp, %eax
inc%ebp }

}

⎫

⎪

⎬

⎪

⎭

}

31 Return-oriented Programming: BH2008

W^X does not prevent arbitrary code execution,
but does make it harder!

W^X wrapup

What else can we do?

Address space layout randomization (ASLR)

.text .data .bss heap stack Env.

Low memory
addresses

High memory
addresses

dynamically linked libraries (libc) go in here

Address space layout randomization (ASLR)

.text .data .bss heap stack Env.

dynamically linked libraries (libc) go in here

PaX implementation for example:
• Randomize offsets of three areas
• 16 bits, 16 bits, 24 bits of randomness
• Adds unpredictability… but how much?

random
16-bit
offset

random
16-bit
offset

random
24-bit
offset

ASLR Example

Defeating ASLR
• W^X not on?

Large nop sled with classic buffer overflow

• Use a vulnerability that can be used to leak address information
(e.g., printf arbitrary read)

• Leaked address
– Are there APIs that leak an address?

• Brute force the address
– All code addresses moved by a single offset
– 216 is not that many things to try on a fast computer

Defeating ASLR
Brute-forcing example from reading “On the effectiveness of
Address Space Layout Randomization” by Shacham et al.

Apache web server
with Oracle 9 PL/SQL
module

request

Apache forks
off child process
to handle request

response

There is a buffer overflow in
module that helps process
request

Defeating ASLR
Brute-forcing example from reading “On the effectiveness of
Address Space Layout Randomization” by Shacham et al.

Apache web server
with Oracle 9 PL/SQL
module

request

Attacker makes a
guess of where usleep()
is located in memory

Failure will crash the child process
immediately and therefore kill connection

Success will crash the child process
after sleeping for 0x01010101
microseconds and kill connection

ASLR

If on 64-bit architecture, randomization
significantly more effective

Can also randomize more stuff:
• Instruction set randomization
• per-memory-allocation randomization
• etc.

Protecting the stack

Can we protect the return address
from being overwritten?

Two approaches:
• Detect manipulation (and then fail safe)
• Prevent it completely

caller
local vars

Low memory
addresses High memory

addresses

Param1EIPEBPlocal
var1 …

Detection: stack canaries

caller
local vars

Low memory
addresses High memory

addresses

Param1EIPEBPlocal
var1 …

Canary value can be:
• Random value (choose once for whole process)
• NULL bytes / EOF / etc. (string functions won’t copy past canary)

canary

On end of function, check that canary is correct, if not fail safe

Detection: stack canaries

caller
local vars

Low memory
addresses High memory

addresses

Param1EIPEBPlocal
var1 …

StackGuard:
• GCC extension that adds runtime canary checking
• 8% overhead on Apache

canary

ProPolice:
• Modifies how canaries inserted
• Adds protection for registers
• Sorts variables so arrays are highest in stack

Detection: stack canaries

caller
local vars

Low memory
addresses High memory

addresses

Param1EIPEBPlocal
var1 …canary

Discussion: How would you get around it?

http://www.phrack.org/issues.html?issue=56&id=5

Detection: copying values to safe
location

caller
local vars

Low memory
addresses

High memory
addresses

Param1EIPEBP
local
var1

…

StackShield:
• Function call: copy return address to a safe location

(beginning of .data)
• Check if stack value is different on function exit

Make a copy

Discussion: How would you get around this?

Prevention

caller
local vars

Low memory
addresses High memory

addresses

Param1EIPEBPlocal
var1 …

StackGhost:
• Encrypting the return address
• XOR with random value on function entrance
• XOR with same value on function exit

• Per-kernel XOR vs. Per-process XOR
• Return address stack

Store control flow
information elsewhere

Confinement (sand boxing)

• All the mechanisms thus far are
circumventable

• Can we at least confine code that is potentially
vulnerable so it doesn’t cause harm?

Simple example is chroot

chroot /tmp/guest
su guest

Now all file access are prepended with /tmp/guest

open(“/etc/passwd”, “r”) Attempts to open
/tmp/guest/etc/passwd

Limitation is that all needed files must be inside chroot jail

Limitation: network access not inhibited

Escaping jails

open(“../../etc/passwd”, “r”) Attempts to open
/tmp/guest/../../etc/passwd

chroot should only be executable by root

create /aaa/etc/passwd
create /aaa/etc/sudoers
chroot /aaa
sudo …

System call interposition

• Malicious code must make system calls in
order to do bad things

• So monitor system calls!

monitorprocess

kernel

system call

Ok / not ok

user
land

Janus

Diagram
from
Garfinkel
2003

Wagner et al.

Software-fault isolation example:
Google Native Client

Goal: run native code from a web browser safely

Examples are Quake and XaoS ported over

From Yee
et al. 2009

Software-fault isolation example:
Google Native Client

Inner sandbox
• require code to abide by alignment and structure rules,

allowing disassembly.
Instruction on 16-byte boundaries (no jump inside instructions)

• Fail if any disallowed instructions
• All user addresses in a range
• No write outside range

User data Code

Validator quickly checks that a binary abides by these rules

Software-fault isolation example:
Google Native Client

Outer sandbox
• system call interposition to monitor
• similar to Janus / ptrace

Native client spec perf

Native client Quake perf

More sandboxing: virtualization

• Modern virtual machines (VMs) often used for
sandboxing

VM monitor

VM 1 VM 2

Guest OS Guest OS

AppApp

Host OS

Hardware

NSA NetTop

More sandboxing: virtualization

• Malicious use of virtualization: blue pill virus

Malicious VM monitor

Hidden VM

OS

App

Hardware

Discussion:
state of low level software security

• Do you think Native Client is fool proof?
• What about VM-based sandboxing?

• How does all this make you feel?

