
CS642:
Computer Security

University of Wisconsin CS 642

Web Security

Liberal borrowing from Mitchell, Boneh, Stanford CS 155

University of Wisconsin CS 642

Web security part 1

Same-origin policy / Navigation policy

Basic web security models

Browser security

Cookies / Session handling

WWW

Tim Berners-Lee and Robert Cailliau 1990
HTTP, CERN httpd, gopher

1993 Mosiac web browser (UIUC, Marc Andreesen)

1994 W3C WWW Consortium --- generate standards
Gopher started charging licensing fees
(Univ of Minnesota)

Nowadays: ecosystem of technologies

• HTTP / HTTPS
• AJAX
• PHP
• Javascript
• SQL
• Apache
• Ruby
• http://w3schools.com/

http://w3schools.com/

Threat model

Internet attacker.com

User

bank.com

A B

network
attacker

Some basics of HTTP

http://www.tom.com:80/calendar/render.php?gsessionid=OK

protocol

hostname

port
path

query

URL’s only allow ASCII-US characters.
Encode other characters:

%0A = newline
%20 = space

Special characters:
+ = space
? = separates URL from parameters
% = special characters
/ = divides directories, subdirectories
= bookmark
& = separator between parameters

HTTP Request

GET /index.html HTTP/1.1
Accept: image/gif, image/x-bitmap, image/jpeg, */*
Accept-Language: en
Connection: Keep-Alive
User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)
Host: www.example.com
Referer: http://www.google.com?q=dingbats

Method File HTTP version Headers

Data – none for GET
Blank line

GET : no side effect POST : possible side effect

HTTP Response

HTTP/1.0 200 OK
Date: Sun, 21 Apr 1996 02:20:42 GMT
Server: Microsoft-Internet-Information-Server/5.0
Connection: keep-alive
Content-Type: text/html
Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT
Set-Cookie: …
Content-Length: 2543

<HTML> Some data... blah, blah, blah </HTML>

HTTP version Status code Reason phrase Headers

Data

Cookies

Browser execution

• Each window (or tab):
– Retrieve/load content
– Render it

• Process the HTML
• Might run scripts, fetch more

content, etc.

– Respond to events
• User actions: OnClick, OnMouseover
• Rendering: OnLoad, OnBeforeUnload
• Timing: setTimeout(), clearTimeout()

Document object model (DOM)

https://www.w3schools.com/js/js_htmldom.asp

Object-oriented way to organize objects in a web page

Properties: document.alinkColor, document.URL,
document.forms[], document.links[], document.anchors[]

Methods: document.write(document.referrer)

Browser object model (BOM)
Corresponding model for larger browser window,

document, frames[], history, location,
navigator (type and version of browser)

From boostlog.io

Seemingly innocuous features?

• <img src=“bucky.jpg” height=“50pt”
width=“50pt”>

• Displays an image
• What can attacker do?

Javascript timing

<html><body>
<script>

var test = document.getElementById(’test’);
var start = new Date();
test.onerror = function() {

var end = new Date();
alert("Total time: " + (end - start));

}
test.src = "http://www.example.com/page.html";

</script>
</body></html>

Behind-firewall webapp scanning

• JavaScript can:
– Request images from internal IP addresses

• Example:
– Use timeout/onError to determine success/failure
– Fingerprint webapps using known image names

Server

Malicious
Web page

Firewall

1) “show me dancing pigs!”

2) “check this out”

Browser

scan

scan

scan
3) port scan results

Browser security model

Should be safe to visit an attacker website

Should be safe to visit sites
simultaneously

Should be safe to delegate content

Browser isolation

Browser is running untrusted inputs (attacker webpage)

Like all big, complex software, browser has security
vulnerabilities

Browsers include “Rich Internet Applications” (RIAs)
that increase attack surface:

e.g., Adobe Flash

Malicious website exploits browser, from there system

Web pages are not single-origin

lFrames: <iframe src=“//site.com/frame.html” > </iframe>

Scripts: <script src=“//site.com/script.js” > </script>

CSS:

<link rel="stylesheet" type="text /css” href=“//site/com/theme.css" />

Objects (flash): [using swfobject.js script]

<script>

var so = new SWFObject(‘//site.com/flash.swf', …);
so.addParam(‘allowscriptaccess', ‘always');
so.write('flashdiv’);

</script>

multi-origin pages
• iframes: <iframe src="//site.com/frame.html"/>
• scripts: <script src="//site.com/script.js"/>
• CSS: <link rel="stylesheet" type="text/css”

href=“//site.com/theme.css"/>
• Images
• Videos
• Content delivery network (CDN)
• Authentication (OAUTH, others)
• Payment
• Social sharing buttons
• Tracking beacons
• Analytics
• Ads
• Ads
• Ads
• Even more ads

Isolation challenges

• What are the subjects?
• To what things do we grant access?

• What are the objects?
• What are we controlling protection over?
• What are the operations we control?

• What are the policies?
• What do we want to allow / disallow?

Browser handles multiple sites, must maintain separate

security contexts for each

Operating system

• Primitives

• System calls

• Processes

• Disks

• Principals: Users

• Discretionary access controls

• Vulnerabilities

• Buffer overflows

• root exploit

• …

Browsers

• Primitives

• Document object model

• Frames

• Cookies / local storage

• Principals: Origins

• Mandatory access controls

• Vulnerabilities

• Cross-site scripting (XSS)

• Cross-site request forgery (CSRF)

• Cache history attacks

• …

javascript contexts
JavaScript
context 1

JavaScript
context 2

JavaScript context 3

[slide credit: V. Shmatikov, CS380]

Policy for scripts

• Scripts want to access resources
– Contact web servers
– Access cookies
– Read/write DOM

• How do we know if this is allowed?
–When requests are to the same company?
–When requests are to the same web site?
–When requests are to the same web page?

DOM access control

JavaScript Context

DOM Reference Monitor

Access?

Object

Object
reference

Is this context allowed to access
object?

[slide credit: V. Shmatikov, CS380]

JavaScript Context
Object ref

Same-origin policy for scripts

• Each frame of page(s) has an origin
– protocol://host:port
– Origin is (protocol,host,port)

• Script in a frame can access its own origin
– Network access, Read/write DOM, storage

(cookies)
– Content from other frames from same origin

• Frame cannot access data associated with
another origin

Frame relationships

26

Child

Sibling

Descendant

Ancestor
(frame bust)

frame policies

canScript(A,B)
– Can frame A execute a script that manipulates

arbitrary DOM elements in frame B?

canNavigate(A,B)
– Can frame A change the origin of content for

frame B?
– frameB.src =
"http://newurl.com/page5.html"

Frame policies

• Permissive
– any frame can navigate any other frame

• Child
– only can navigate if you are parent

• Descendent
– only can navigate if you are ancestor

Which do you think should be used?

Problems with permissive

awgloginwindow.open("https://attacker.com/",
"awglogin");

frames['right'].window.location=“evil.com/login.html”;

General Approach

• A frame can navigate another frame that it
owns the pixels for
– If you delegate some pixels in your frame to

another frame, you can make that other frame
navigate places

• Why?
– You could draw anything you want in those pixels

anyway

Cookies: Setting/Deleting

scope

• Delete cookie by setting �expires� to date in past

• Default scope is domain and path of setting URL

• Client can also set cookies (Javascript)

GET …

HTTP Header:

Set-cookie: NAME=VALUE ;

domain = (when to send) ;

path = (when to send)

secure = (only send over SSL);

expires = (when expires) ;

HttpOnly

if expires=NULL:
this session only

Cookie scope rules
(domain and path)

• Say we are at www.wisc.edu
– Any non-TLD suffix can be scope:
• allowed: www.wisc.edu or wisc.edu
• disallowed: www2.wisc.edu or ucsd.edu

• Path can be set to anything

http://www.wisc.edu
http://www.wisc.edu

Cookies: reading by server

• Browser sends all cookies such that
• domain scope is suffix of url-domain
• path is prefix of url-path
• protocol is HTTPS if cookie marked “secure”

GET /url-domain/url-path
Cookie: name=value

Cookie security issues?
• Cookies have no integrity
– HTTPS cookies can be overwritten by HTTP cookie

(network injection)
– Malicious clients can modify cookies

• Shopping cart vulnerabilities

• Scoping rules can be abused
– blog.example.com can read/set cookies for example.com

• Privacy
– Cookies can be used to track you around the Internet

• HTTP cookies sent in clear
– Session hijacking

authentication cookies

Browser

website.com

HTTP/1.1 200 OK
Set-Cookie:auth=981mndg897asdfd

db.users.insert({
username:"user",
auth-cookie:981mnd89...,
login:true,

})

POST /login.html HTTP/1.1
username=user&passwd=pass

GET /index.html HTTP/1.1
Cookie: auth=981mndg897asdfd

Session handling and login
GET /index.html

Set-Cookie: AnonSessID=134fds1431

POST /login.html?name=bob&pw=12345

Set-Cookie: SessID=83431Adf

Protocol
is HTTPS.
Elsewhere
just HTTP

Cookie: AnonSessID=134fds1431

GET /account.html
Cookie: SessID=83431Adf

Cookie example

Session Hijacking

From http://codebutler.com/firesheep

Eavesdrop on
network

Listen for
unencrypted
session
cookies

Make
requests with
other’s
cookies

Towards preventing hijacking
• Use encryption when setting session cookies
• SessID = Enc(K,info) where :
– K is server-side secret key
– Enc is Encrypt-then-MAC encryption scheme
– info contains:

• user id
• expiration time
• other data

• Server should record if user logs out
• Does this prevent Firesheep hijacking?
– No
– include in data machine-specific information
– turn on HTTPS always

