Web Security

CS642: Computer Security

Liberal borrowing from Mitchell, Boneh, Stanford CS 155

University of Wisconsin CS 642

Web security part 1

Basic web security models

Browser security

Same-origin policy / Navigation policy

Cookies / Session handling

WWW

Tim Berners-Lee and Robert Cailliau 1990 HTTP, CERN httpd, gopher

1993 Mosiac web browser (UIUC, Marc Andreesen)

1994 W3C WWW Consortium --- generate standards Gopher started charging licensing fees (Univ of Minnesota)

Nowadays: ecosystem of technologies

- HTTP / HTTPS
- AJAX
- PHP
- Javascript
- SQL
- Apache
- Ruby
- <u>http://w3schools.com/</u>

Threat model

Some basics of HTTP

HTTP Request

GET : no side effect POST : possible side effect

HTTP Response

Cookies

Browser execution

00 c × c c	E (E (N (S (D (H (H (C (D (T (K (C (O (R (A (A (D (C (D ((H (H (H (H (H (H (H (H (
← → C ③ pages.cs.	wisc.edu/~rist/642-fall-2011/	2
Network security Oct 11, 2011	NMAP Manual Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection, by Ptacek and Newsham Slides (PDF)	(
Network security Oct 13, 2011	BGP/S-BGP, DNS/DNSsec, DNS/Coche poisoning, by Steve Friedl A survey of BGP security, Butler et al. Slides (PDF)	
Network security Oct 18, 2011	Guest lecture by David Parter	
Network security Oct 20, 2011	Guest lecture by David Parter	
Cryptography Oct 25, 2011	Overview of TLS (HTTPS), symmetric encryption, classical encryption, Shannon security, one-time pad encryption • A Method for Obtaining Digital Signatures and Public Key Cryptosystems, by Rivest, Shamir, and Adleman • Communication Theory of Secrecy Systems, by Shannon (for reference only) • RFC 5246: Transport Laver Security (TLS) Protocol Version 1.2, by Dierks and Rescorta (for reference only) Slides (PDF)	
C	TT Concert lance and the seal black since marker of constants back for string.	P
aes-src-12-09-11.zip	c ocb.c	×

- Each window (or tab):
 - Retrieve/load content
 - Render it
 - Process the HTML
 - Might run scripts, fetch more content, etc.
 - Respond to events
 - User actions: OnClick, OnMouseover
 - Rendering: OnLoad, OnBeforeUnload
 - Timing: setTimeout(), clearTimeout()

Document object model (DOM)

Object-oriented way to organize objects in a web page

Properties: document.alinkColor, document.URL, document.forms[], document.links[], document.anchors[]

Methods: document.write(document.referrer)

https://www.w3schools.com/js/js_htmldom.asp

Browser object model (BOM)

Corresponding model for larger browser window,

document, frames[], history, location, navigator (type and version of browser)

From boostlog.io

Seemingly innocuous features?

-
- Displays an image
- What can attacker do?

Javascript timing

```
<html><body><img id="test" style="display: none">
<script>
```

```
var test = document.getElementById('test');
var start = new Date();
test.onerror = function() {
    var end = new Date();
    alert("Total time: " + (end - start));
    }
    test.src = "http://www.example.com/page.html";
</script>
</body></html>
```

Behind-firewall webapp scanning

- JavaScript can:
 - Request images from internal IP addresses
 - Example:
 - Use timeout/onError to determine success/failure
 - Fingerprint webapps using known image names

Browser security model

Should be safe to visit an attacker website

Should be safe to visit sites simultaneously

Should be safe to delegate content

🕤 http://a.com

Browser isolation

Browser is running untrusted inputs (attacker webpage)

Like all big, complex software, browser has security vulnerabilities

Browsers include "Rich Internet Applications" (RIAs) that increase attack surface:

e.g., Adobe Flash

Malicious website exploits browser, from there system

Web pages are not single-origin

IFrames: <iframe src="//site.com/frame.html" > </iframe> Scripts: <script src="//site.com/script.js" > </script> CSS:

k rel="stylesheet" type="text /css" href="//site/com/theme.css" />

Objects (flash): [using swfobject.js script] <script> var so = new SWFObject('//site.com/flash.swf', ...); so.addParam('allowscriptaccess', 'always'); so.write('flashdiv'); </script>

multi-origin pages

- iframes: <iframe src="//site.com/frame.html"/>
- scripts: <script src="//site.com/script.js"/>
- CSS: <link rel="stylesheet" type="text/css" href="//site.com/theme.css"/>
- Images
- Videos
- Content delivery network (CDN)
- Authentication (OAUTH, others)
- Payment
- Social sharing buttons
- Tracking beacons
- Analytics
- Ads
- Ads
- Ads
- Even more ads

Isolation challenges

- What are the subjects?
 - To what things do we grant access?
- What are the objects?
 - What are we controlling protection over?
 - What are the operations we control?
- What are the policies?
 - What do we want to allow / disallow?

0	http://a.com
	A.com
	B.com

Browser handles multiple sites, must maintain separate security contexts for each

Operating system

- Primitives
 - System calls
 - Processes
 - Disks
- Principals: Users
 - Discretionary access controls
- Vulnerabilities
 - Buffer overflows
 - root exploit
 - ...

Browsers

- Primitives
 - Document object model
 - Frames
 - Cookies / local storage
- Principals: Origins
 - Mandatory access controls
- Vulnerabilities
 - Cross-site scripting (XSS)
 - Cross-site request forgery (CSRF)
 - Cache history attacks
 - •

[slide credit: V. Shmatikov, CS380]

JavaScript context 2

JavaScript context 3

Policy for scripts

- Scripts want to access resources
 - Contact web servers
 - Access cookies
 - Read/write DOM
- How do we know if this is allowed?
 - When requests are to the same company?
 - When requests are to the same web site?
 - When requests are to the same web page?

[slide credit: V. Shmatikov, CS380]

DOM access control

Same-origin policy for scripts

- Each frame of page(s) has an origin
 - protocol://host:port
 - Origin is (protocol,host,port)
- Script in a frame can access its own origin
 - Network access, Read/write DOM, storage (cookies)
 - Content from other frames from same origin
- Frame cannot access data associated with another origin

Frame relationships

frame policies

*canScript(A,B)

– Can frame A execute a script that manipulates arbitrary DOM elements in frame B?

*canNavigate(A,B)

- Can frame A change the origin of content for frame B?
- -frameB.src =
 - "http://newurl.com/page5.html"

Frame policies

- Permissive
 - any frame can navigate any other frame
- Child
 - only can navigate if you are parent
- Descendent
 - only can navigate if you are ancestor

Which do you think should be used?

Problems with permissive

frames['right'].window.location="evil.com/login.html";

General Approach

- A frame can navigate another frame that it owns the pixels for
 - If you delegate some pixels in your frame to another frame, you can make that other frame navigate places
- Why?
 - You could draw anything you want in those pixels anyway

Cookies: Setting/Deleting

- Delete cookie by setting "expires" to date in past
- Default scope is domain and path of setting URL
- Client can also set cookies (Javascript)

Cookie scope rules (domain and path)

- Say we are at <u>www.wisc.edu</u>
 - Any non-TLD suffix can be scope:
 - allowed: <u>www.wisc.edu</u> or wisc.edu
 - disallowed: www2.wisc.edu or ucsd.edu
- Path can be set to anything

Cookies: reading by server

GET /url-domain/url-path

Cookie: name=value

- Browser sends all cookies such that
 - domain scope is suffix of url-domain
 - path is prefix of url-path
 - protocol is HTTPS if cookie marked "secure"

Cookie security issues?

- Cookies have no integrity
 - HTTPS cookies can be overwritten by HTTP cookie (network injection)
 - Malicious clients can modify cookies
 - Shopping cart vulnerabilities
- Scoping rules can be abused
 - blog.example.com can read/set cookies for example.com
- Privacy
 - Cookies can be used to track you around the Internet
- HTTP cookies sent in clear
 - Session hijacking

Set-Cookie:auth=981mndg897asdfd

GET /index.html HTTP/1.1 Cookie: auth=981mndg897asdfd

Session handling and login

Network security Oct 13, 2011 • MARA-Manali Desting of Service. Elading Network. Invasion Data (CPD) State CPD BOTPS 60, France, Service and Network. Invasion Data (CPD) Network security BOTPS 60, France, Service and Network. Invasion Data (CPD) Network security BOTPS 60, France, Service and Network and Network and Network security. Network security Network security Once Security,	Network security	NMAP Manual	
BCIPS-BCIP_DNSDNSee, Verterver secret/ Oct 13, 2011 Science science in the secret of the secre	0.111,2011	Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection, by Placek and Newsham Slides (PDP)	
Network security Oci 18, 2011 Gasts locate by David Pater Oci 18, 2011 Gasts locate by David Pater Oci 28, 2011 Overview of TL5. SHTTPS: systematic encryption, classical encryption, Shannon Cypelerwidty 	Network security Oct 13, 2011	BGP/S-BGP, DNS/DNSee, • DNS cache poisoning, by Seve Priedl • A survey of BGP security, Butter et al. Sildes (PDP)	
Network security Goats locate they David Pater Oct 20, 2011 Overview of TLS (HTTPS), symmetric encryption, classical encryption, Shannon Cryptography • Method for Obtaining Digital Systems and Public Key Cryptogrammetry Cryptography • Method for Obtaining Digital Systems and Public Key Cryptogrammetry Method for Obtaining Digital Systems and Public Key Cryptogrammetry • Method for Obtaining Digital Systems and Public Key Cryptogrammetry Method for Obtaining Digital Systems and Revolution (Fortune only) • Method for Obtaining Digital Systems and Public Key Digital Systems and Revolution (Lip Public Systems).	Network security Oct 18, 2011	Guest lecture by David Parter	
Overview of TL.5 (ITTPS), symmetric encryption, classical encryption, Statento encryption, Testing in the encryption of the encryptio	Network security Oct 20, 2011	Guest lecture by David Parter	
Slides (PDF)	Crypiography Oct 25, 2011	Overview of TLS (HTTPS), symmetric encryption, classical encryption, Shannon levently, one drive and decryption A Method for Obtaining Dipital Signamers and Public Key: Cryptosystems, by River, Skamin, and Adhema Communication. Theory of Science, Systems, by Shannon (for reference only REC 346: Tamport J areas Science), Tamport J and Science Records (for ofference only) Silder (7DF)	

GET /index.html

Set-Cookie: AnonSessID=134fds1431

Protocol is HTTPS. Elsewhere just HTTP POST /login.html?name=bob&pw=12345 Cookie: AnonSessID=134fds1431

Set-Cookie: SessID=83431Adf

GET /account.html Cookie: SessID=83431Adf

Cookie example

github.com locally stored data	Remove All
st-user_session_same_site	^ ×
Name Host-user_session_same_site	
Content MS2K65ZOVsHUJg0XTysfHm0TKVQPHZrVpjoj0vj2691NMnbm	
Domain github.com	
Path /	
Send for Secure same-site connections only	
Accessible to script No (HttpOnly)	
Created Monday, August 6, 2018 at 9:15:57 AM	
Expires Monday, March 4, 2019 at 9:58:06 AM	

Session Hijacking

Eavesdrop on network

Listen for unencrypted session cookies

Make requests with other's cookies

From http://codebutler.com/firesheep

Towards preventing hijacking

- Use encryption when setting session cookies
- SessID = Enc(K,info) where :
 - K is server-side secret key
 - Enc is Encrypt-then-MAC encryption scheme
 - info contains:
 - user id
 - expiration time
 - other data
- Server should record if user logs out
- Does this prevent Firesheep hijacking?
 - No
 - include in data machine-specific information
 - turn on HTTPS always