
CS642:
Computer Security

Spring 2019

University of Wisconsin CS 642

Cryptography Intro
Part 2

University of Wisconsin CS 642

Cryptography

One time pad

Basic goals and setting

Provable security

TLS (HTTPS)

Block ciphers

symmetric encryption

Alice Bob

Message (plaintext)

Eve

Encrypt

K

M

K K

Decrypt

K

MC

Ciphertext

asymmetric encryption

Alice Bob

Bob's public key

Eve

pkB

Encrypt
M

pkA,skA

Decrypt

skB

MC

Bob's secret key

pkB

pkB,skB

pkA

mac

Alice Bob
K K

Verify

K valid or
invalid(M,T)

MAC

K

M T

Mallory

Authentication Tag

Message Authentication Code (MAC)
message integrity & authenticity / symmetric

digital signatures

Alice Bob

Verify

pkA valid or
invalid(M,S)

Sign

skA

M S

Mallory

message integrity & authenticity / asymmetric

pkA,skA

pkB

pkB,skB

pkA

Signature

key exchange

Alice Bob

…

Eve

K K
Alice and Bob exchange messages in the presence of an
eavesdropper, and (magically) both generate an identical
secret (symmetric) key that Eve cannot know

How would
you do this?

key transport

Alice Bob

Eve

K := rand()

pkA,skA

pkB

pkB,skB

pkA

Encrypt

pkB

K C

Decrypt

skB

K

Two main techniques for key exchange
1. Public key transport (shown here)
2. Diffie-Hellman key agreement

Internet

Quantity: , CC#: 541543123012345610

Data confidentiality

Data integrity

1

We need secure channels for transmitting data

http://amazon.com

An example: Online shopping

An example: On-line shopping with TLS

https://amazon.com

Enc(K, “Quantity: 1 , CC#: 5415431230123456”)
K K

Step 1:
Key exchange
protocol to
share secret K

Step 2:
Send data via
secure
channel

TLS uses many cryptographic primitives:
key exchange: hash functions, digital signatures, public key encryption
secure channel: symmetric encryption, message authentication

Mechanisms to resist replay attacks, man-in-the-middle attacks,
truncation attacks, etc…

A short history of TLS up to 2009

SSL ver 2
SSL ver 2.0 designed by Hickman at Netscape

1994

Wagner, Goldberg break SSL ver 2
1995

SSL ver 3
Freier, Karlton, Kocher design SSL ver 3.0

Bleichenbacher breaks RSA PKCS #1 encryption,
used in SSL ver 3

1998

TLS ver 1 released as IETF standard,
based on SSL 3, many cryptographers involved

2001

TLS ver 1.0

Brumley, Boneh remote timing attacks

Vaudenay, Klima et al. padding attacks

Rogaway IV re-use insecurity

2002

1999

TLS ver 1.1 released as standard

2003

TLS ver 1.1
2006

…

How many
cryptographers
involved?

(more attacks and fixes)

TLS handshake for
RSA transportBank customer Bank

PMS <- D(sk,C)

ClientHello, MaxVer, Nc, Ciphers/CompMethods

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod

CERT = (pk of bank, signature over it)
Check CERT
using CA public
verification key

Pick random Nc

Pick random Ns

Pick random PMS
C <- E(pk,PMS)

C

ChangeCipherSpec,
{ Finished, PRF(MS, “Client finished” || H(transcript)) }

ChangeCipherSpec,
{ Finished, PRF(MS, “Server finished” || H(transcript’)) }

MS <- PRF(PMS, “master secret” || Nc || Ns)

Bracket notation
means contents
encrypted

TLS Record layer
Bank customer Bank

C1

C2

C1 <- E(K1,Message)

MS <- PRF(PMS, “master secret” || Nc || Ns)

K1,K2 <- PRF(MS, “key expansion” || Ns || Nc)

C2 <- E(K2,Message’)

Message <- D(K1,C1)

Message’ <- D(K2,C2)

Primitives used by TLS

CERT = (pk of bank, signature over it)
Digital signatures

C Public-key encryption
(RSA)

ChangeCipherSpec,
{ Finished, PRF(MS, “Client finished” || H(transcript)) } PRF

Hash function

C1

C2
Symmetric encryption

We’re now at TLS ver 1.2
No (publicly) known attacks

Did the TLS designers get it right?

Even for “simple” applications (secure channels), secure cryptography
is really hard to design. The problems are rarely in primitives.

Many other tools have similar story:

SSH, IPSec, Kerberos, WEP/WPA (WiFi security), GSM (cell phone networks), …

TLS was built via “design-break-redesign-break…”

In last few years host of attacks that affect TLS 1.2 as well have been discovered
[Paterson, Ristenpart, Shrimpton 2011]
Lucky 13 attack [AlFardan, Paterson 2013]
…

Provable security cryptography

Supplement “design-break-redesign-break…” with a more mathematical approach

1. Design a cryptographic scheme

Shannon 19492. Provide proof that no one
is able to break it

Scheme semantics

Security

Formal definitions Security proofs

Show it is mathematically
impossible to break security

Symmetric encryption

E D

Kg

key generation

Rk

K

R

M
C C M or

error

Handled
in TLS key
exchange

R signifies fresh
random bits.
Where do these
come from?

C is a ciphertext

Correctness: D(K , E(K,M,R)) = M with probability 1 over randomness used

Kerckhoffs’ principle: what parts are public and which are secret?

Optional

Some attack settings

• Attacker goal: decrypt ciphertext or obtain key
• Unknown plaintext

– attacker only sees ciphertexts

• Known plaintext
– attacker knows some plaintext-ciphertext pairs

• Chosen plaintext
– attacker can choose some plaintexts and receive

encryptions of them

• Chosen ciphertext
– Attacker can get someone to decrypt a message of

their choosing,

Jane Doe 1343-1321-1231-2310

Michael Swift 9541-3156-1320-2139

John Jones 5616-2341-2341-1210

Eve Judas 2321-4232-1340-1410

2414-2472-2742-7428

3612-4260-2478-7243

6020-7412-7412-2728

7472-1747-2418-2128

Substitution ciphers

E(K, 2321-4232-1340-1410) =

0 1 2 3 4 5 6 7 8 9

8 2 7 4 1 6 0 5 9 3

Kg: output randomly chosen permutation of digits

K =

7472-1747-2418-2128

plaintext digit

ciphertext digit

Knowing one plaintext, ciphertext
pair leaks key material!

0 1 2 3 4 5 6 7 8 9

8 2 7 4 1 6 0 5 9 3

Attacker knows 2321-4232-1340-1410

??????????

7472-1747-2418-2128

1343-1321-1231-2310

Julius Caeser

Cracking Simple Substitution

● Brute force attack: Eve would need 26!

keys.

● That’s 4.0329146e+26 keys. Too hard!

?

?

Cracking Simple Substitution

● But, wait a minute...

English plaintext
letter frequencies

Cracking Simple Substitution

● But, wait a minute...

English plaintext
letter frequencies

Ciphertext
letter frequencies

Cracking Simple Substitution

● But, wait a minute… frequency analysis

works! English plaintext
letter frequencies

Ciphertext
letter frequencies

Cracking Simple Substitution

CiphertextEnglish plaintext

● Can sort by frequencies

Cracking Simple Substitution

● Eve wins … you don’t need brute force

● Frequency analysis will break simple

substitution

?

?

enigma
• Enigma was state of

the art cryptography
developed by the
Germans

• Broken by the Allies

• Raised theoretical
questions about
cryptography

One-time pads

Fix some message length L

Kg: output random bit string K of length L

E(K,M) = M K D(K,C) = C K

Shannon’s security notion

Def. A symmetric encryption scheme is perfectly secure if
for all messages M,M’ and ciphertexts C

Pr[E(K,M) = C] = Pr[E(K,M’) = C]
where probabilities are over choice of K

In words:
each message is equally likely to map to a given ciphertext

In other words:
seeing a ciphertext leaks nothing about what
message was encrypted

Does a substitution cipher meet this definition? No!

Shannon’s security notion

Def. A symmetric encryption scheme is perfectly secure if
for all messages M,M’ and ciphertexts C

Pr[E(K,M) = C] = Pr[E(K,M’) = C]
where probabilities are over choice of K

Thm. OTP is perfectly secure

Pr[K M = C] =

For any C and M of length L bits

1 / 2L

Pr[K M’ = C] Pr[K M = C] =

OTP limitations

bank.com

M⊕K

Eve
Mallory

K must be as large as M
Reusing K for M,M' leaks M⊕M'
Message length is obvious
Mallory can make undetected (unknown) modifications

provable security
• Cryptography as a computational science
• Use computational intractability as basis for

confidence

1. Design a cryptographic scheme
2. Provide a proof that no attacker with bounded

computational resources can break it
[Goldwasser, Micali, Blum, 1980s]

Formal definitions
- Scheme semantics

and assumption
- Security

Security Proofs (reductions)
Breaking scheme

Breaking assumptions

provable security
• Provable security yields

– well-defined assumptions and security goals

– designers (and attackers) can focus on assumptions

• As long as assumptions hold, we can be
confident in security of a cryptographic
scheme

Typical assumptions

• Basic atomic primitives are hard to break:
– Factoring of large composites intractable

– RSA permutation hard-to-invert

– Block ciphers (AES, DES) are good pseudorandom
permutations (PRPs)

– Hash functions are collision resistant

Confidence in atomic primitives is gained by cryptanalysis,
public design competitions

SHA-3 competition, AES competition

recap

• Symmetric vs asymmetric cryptography

• Primitives
–symmetric/asymmetric encryption
–message authentication codes
–digital signatures
–key exchange

• Provable security

• Shannon's one-time pad
–security guarantees and limitations

Block ciphers

E D

Kg

key generation

RK

K

M C C M

E: {0,1}k x {0,1}n -> {0,1}n

Key is a uniformly
selected bit string of
length k

Encryption implements
a family of permutations
on n bit strings,
one permutation for each K

Security goal: E(K,M) is indistinguishable from a random n-bit string
for anyone that doesn't know K

block cipher security

world 1

M E

K

C

world 0

Let C be a string
chosen uniformly at

random

M

C

???

Can adversary distinguish between World 0 and World 1?

If this holds for all polynomial time adversaries, then E is called
a secure pseudorandom function (PRF)

E: {0,1}k x {0,1}n → {0,1}n

Data encryption standard (DES)

FK1

L0 R0

+

FK2

+

… …

L1 R1

L2 R2

Originally called Lucifer
- team at IBM
- input from NSA
- standardized by NIST in 1976

n = 64
k = 56

Split 64-bit input into L0,R0 of 32 bits each

Repeat Feistel round 16 times

Each round applies function F using
separate round key

Number of keys:
72,057,594,037,927,936

Best attacks against DES
Attack Attack type Complexity Year

Biham, Shamir Chosen plaintexts,
recovers key

247 plaintext,
ciphertext pairs

1992

DESCHALL Unknown
plaintext,
recovers key

256/4 DES
computations
41 days

1997

EFF Deepcrack Unknown
plaintext,
recovers key

~4.5 days 1998

Deepcrack +
DESCHALL

Unknown
plaintext,
recovers key

22 hours 1999

- DES is still used in some places
- 3DES (use DES 3 times in a row with more keys) expands
keyspace and still used widely in practice

Advanced Encryption Standard (AES)

Response to 1999 attacks:
- NIST has design competition for new

block cipher standard
- 5 year design competition
- 15 designs, Rijndael design chosen

Advanced Encryption Standard (AES)

Permute

M

+

…
Rijndael (Rijmen and Daemen)

n = 128
k = 128, 192, 256

Substitution-permutation design.
For k=128 uses 10 rounds of:

1) Permute:
SubBytes (non-linear S-boxes)

ShiftRows + MixCols (invertible linear transform)

Number of keys for k=128:
340,282,366,920,938,463,463,374,607,431,768,211,456

2) XOR in a round key derived from K

(Actually last round skips MixCols)

Permute

S1 K1

+S2 K2

Permute

building a block cipher

key k

key expansion

k1 k2 k3 kn

R
(k

1
,
⋅)

R
(k

2
,
⋅)

R
(k

3
,
⋅)

R
(k

n
,
⋅)

m c

[slide credit: Dan Boneh, CS155]

R(k,m): round function
AES-128 n=10

aes round function

Designing good block ciphers is a dark art

Must resist subtle attacks: differential
attack, linear attacks, others

Chosen through public design contests

Use build-break-build-break iteration

Best attacks against AES

Attack Attack type Complexity Year

Bogdanov,
Khovratovich,
Rechberger

chosen
ciphertext,
recovers key

2126.1 time +
some data
overheads

2011

- Brute force requires time 2128

- Approximately factor 4 speedup

Summary and next time

• Crypto as computational science

• Overview of TLS

• Symmetric encryption and block ciphers
introduced

