MACs, Passwords and
Asymmetric encryption

CS642.
Computer Security

Asymmetric encryption

MACs

Password encryption

The RSA algorithm

PKCS #1 encryption

Digital signing & public-key infrastructure

Hybrid encryption

University of Wisconsin CS 642

Hash functions and message
authentication

Hash function H maps arbitrary bit string to fixed length string of
sizem

MD5: m =128 bits
M — H(M) SHA-1: m = 160 bits
SHA-256: m = 256 bits

Some security goals:

- collision resistance: can’t find M != M’ such that H(M) = H(M’)

- preimage resistance: given H(M), can’t find M

- second-preimage resistance: given H(M), can’t find M’ s.t.
H(M’) = H(M)

Hash function application example

Password hashing. Choose random salt and store (salt,h) where:

salt || pw —0 H h

The idea: Attacker, given (salt,h), should not be able to recover pw

Or can they?

For each guess pw’:
If H(salt| |pw’) = h then
Ret pw’

Message authentication

key generation

Optional. If no R—> Kg
randomness, then called
a Message Authentication
Code (MAC) l
K
Lo v
R— M-—>
Tag —>T Ver —> QOorl
M—> T —

Correctness: Ver(K, Tag(K,M,R)) =1 with probability 1 over randomness used

Unforgeability: Attacker can’t find M’,T such that V(K,M’T) =1

Recall PRF security

F: {0,1}*x {0,1}" ->{0,1}"

Security goal: F(K,M) is indistinguishable from random n-bit string
for anyone without K

For M;, M, ..., M, chosen
by adversary and distinct

F(K/Ml) ’ F(KIMZ)I LN F(Kqu) Ul, Uz, cer U

U, is fresh n-bit uniform string

q

Adversary that adaptively chooses messages but is limited to
“reasonable” q (e.g., g = 2%9) can’t distinguish between two vectors

This means outputs of F are unpredictable:
Given F(K,M,;) , F(K,M,), ..., F(K,Mq_;) no attacker can
predict F(K,M,) with probability 1 / 2"+ negligible

Any PRF is a good MAC

Optional. If no R—> Kg
randomness, then called
a Message Authentication
Code (MAC) l
K
Lo v
R— M-—>
Tag —>T Ver —> QOorl
M—> T —

Correctness: Ver(K, Tag(K,M,R)) =1 with probability 1 over randomness used

Unforgeability: Attacker can’t find M’,T such that V(K,M’T) =1

Any PRF is a good MAC

Rk_> Kg key generation picks uniform key for F
K
v 4
M——
M—> F(K,M) — T F(K,M)=T? —0or1
T —

How do we instantiate F?

Attempt 1

Use a hash function H to build MAC.
Kg outputs uniform bit string K

Tag(K,M) = HMAC(K,M) defined by:

K|[IM =—H T

To verify a M,T pair, check if HMAC(K,M) =T

But: what if | want to append: HMACK(K, M| |M’) by continuing hash

Message authentication

Use a hash function H to build a MAC.
Kg outputs uniform bit string K

Tag(K,M) = HMAC(K,M) defined by:

K@ipad || M —— H

K@ opad || h —

with HMAC

ipad != opad are constants

To verify a M,T pair, check if HMAC(K,M) =T

N
H — T
v

Unforgeability holds if H is a secure PRF when so-keyed

Build a new scheme from CBC and HMAC
Kg outputs CBC key K1 and HMAC key K2

Several ways to combine: (1) M
(1) encrypt-then-mac
(2) mac-then-encrypt

(3) M

K1—> CBC HMAC < K2

Build a new scheme from CBC and HMAC
Kg outputs CBC key K1 and HMAC key K2

Several ways to combine: (1) M
(1) encrypt-then-mac l
¥
(2) mac-then-encrypt
K1—» CBC HMAC <—K2
C— T

Thm. If encryption scheme provides confidentiality against
passive attackers and MAC provides unforgeability, then
Encrypt-then-MAC provides secure authenticated encryption

TLS record protocol: MAC-Encode-Encrypt (MEE)

Padding is not MAC'd.
Implementations must
handle padding checks

ComSperr\wle:hod Payload
MAC very carefully.
|
Payload MAC tag Padding
Encrypt
reader Ciphertext

HMAC-MD5, HMAC-SHA1, HMAC-SHA256

CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

Dedicated authenticated encryption schemes

OCB Rogaway

(Offset Codebook)

GCM McGrew, Viega

(Galios Counter

Mode)

CWC Kohno, Viega, Whiting

CCM Housley, Ferguson,
Whiting

EAX Wagner, Bellare,

Rogaway

One-pass

CTR mode plus specialized MAC

CTR mode plus Carter-Wegman
MAC

CTR mode plus CBC-MAC

CTR mode plus OMAC

Symmetric Encryption Advice

Never use CTR mode or CBC mode by themselves

Passive security is almost never good enough!!

Encrypt-then-MAC better than MAC-then-Encrypt,
Encrypt and MAC

Dedicated modes that have been analyzed thoroughly
are also good

Password-based symmetric encryption

Optional
\ v
R =
Enc
M —

W L

S A
T

l

pW

Cis a ciphertext

Dec

M or
error

Correctness: D(pw, E(pw,M,R)) = M with probability 1 over randomness used

Encrypt-then-MAC with CBC and HMAC

I\ill\l I\A/I\Z M3
1V
v v %

EKl EKl EKl

| | |
CO Cl — C2 — C3
\ /

Y
K2 @ipad || C —
K2 @opad |[|h — H

Ciphertext is C,T How do we use with a pw?

Password-based Key Deriviation

PBKDF(pw,salt):

pw || salt || 1 =——

pw|| salt || 2 =—

(

E_

-

PBKDF)

}

Truncate if
needed

\

H K1

}

D_ -
% _

repeat c times

PBKDF + Symmetric encryption yields
PW-based encryption

Enc(pw,M,R):

salt || R" =R

K = PBKDF(pw,salt)
C = Enc’(K,M,R’)
Return (salt,C)

Dec(pw,C):

salt || C'=C

K = PBKDF(pw,salt)
M = Enc’(K,C’)
Return M

Here Enc’ is a normal

symmetric encryption
scheme (CBC+HMAC)

Attacks?

Number of Users with

Number of Users with

e Password (absolute) L RS Password (absolute)
1 123456 290731 11 Nicole 17168
2 12345 79078 12 Daniel 16409
3 123456789 76790 13 babyagirl 16094
4 Password 61958 14 monkey 15294
5 iloveyou 51622 15 Jessica 15162
6 princess 35231 16 Lovely 14950
7 rockyou 22588 17 michael 14898
8 1234567 21726 18 Ashley 14329
9 12345678 20553 19 654321 13984
10 abc123 17542 20 Qwerty 13856

Password Length Distribution

3.81% 1.62%
B Only upper case From an Imperva study of
M Only lower case released RockMe.com
™ Oslby swmaric password database

B Mixed letters and numeric

2010

B Contains special characters

Brute-force attacks

* Given known plaintext, ciphertext pair:
— M and C = Enc(pw,M)

* Enumerate a dictionary D of possible
passwords, in order of likelihood

Ris salt||IV in CBC-based modes

BruteForcel(M,C): Both are public:
R||C =C C=salt || IV]|CL]].. M1
C]foreach pw* in D do IV &
C* = Enc(pw*,M,R) :
If C* = C’ then @ B
Return pw* l

CO Cl

Brute-force attacks

* Given known plaintext, ciphertext pair:
— M and C = Enc(pw,M)

* Enumerate a dictionary D of possible
passwords, in order of likelihood

BruteForcel(M,C): BruteForce2(C):
R||C'=C foreach pw* in D do
C]foreach pw* in D do M* = Dec(pw?*,C)
C* = Enc(pw™,M,R) If M* “looks right” then
If C* = C’ then @ Return (pw*,M*)
Return pw*

PBKDF design attempts to slow down
brute-force attacks

Truncate if
needed

\

pw ||salt||1 — H H e = H K1

Iterating c times should slow down attacks by factor of ¢

Salts:
Different derived keys, even if same password
Slows down attacks against multiple users
Prevents precomputation attacks, if salts chosen correctly

rist@seclab-laptopl:~/work/teaching/642-fall-2011/slides$ openssl speed shal
Doing shal for 3s on 16 size blocks: 4109047 shal's in 3.00s

Doing shal for 3s on 64 size blocks: 3108267 shal's in 2.99s

Doing shal for 3s on 256 size blocks: 1755265 shal's in 3.00s

Doing shal for 3s on 1024 size blocks: 636540 shal's in 3.00s

Doing shal for 3s on B192 size blocks: 93850 shal's in 3.00s

OpenSSL 1.0.0d 8 Feb 2011

rist@seclab-laptopl:~/work/teaching/642-fall-2011/slides$ openssl speed aes-128-
cbc

Doing aes-128 cbc for 3s on 16 size blocks: 27022606 aes-128 cbc's in 3.00s
Doing aes-128 cbc for 3s on 64 size blocks: 6828856 aes-128 cbc's in 2.99s

Doing aes-128B cbc for 3s on 256 size blocks: 1653364 aes-128 cbc's in 3.00s
Doing aes-128B cbc for 3s on 1024 size blocks: 438909 aes-128 cbc's in 2.99s
Doing aes-128 cbc for 3s on 8192 size blocks: 54108 aes-128 cbc's in 3.00s
OpenSSL 1.0.0d B Feb 2011

Say c = 4096. Generous back of envelope™* suggests that in 1 second,
can test 252 passwords and so a naive brute-force:

6 numerical digits | 10° = ~ 3968 seconds
1,000,000

6 lower case 36° = ~ 99 days

alphanumeric digits | 2,176,782,336

8 alphanumeric + 728 = ~ 33million days

10 special symbols | 722,204,136,308,736

* | did the arithmetic...

Password recap

* Short passwords can be cracked easily

— See also: JohnTheRipper, aircrack, tools

e Salting and iteration are helpful and needed

— Salts must be sufficiently large and unpredictable
— Still possible to crack in some cases

Asymmetric Encryption

* |dea: trapdoor function
— Easy to compute in one direction

— Difficult to compute in opposite direction without
knowledge

 Example: padlock
— Easy to lock without key
— Hard to open
* Other examples: Large composite numbers

— Easy to multiple
— Hard to factor

Asymmetric Encryption: Trapdoor function

easy given pk

a2
N

fpk(x)

_

hard given pk
easy given sk

The RSA trapdoor function

e Rivest, Shamir, Adleman 1978
 Garnered them a Turing award

RSA math

p and g be large prime numbers

N = pq
N is called the modulus

p=7,q=13, gives N =91
p=17,q =53, gives N =901

RSA math

p and g be large prime numbers

N = pq
N is called the modulus

Z, ={0,1,2,3,..., N-1} The size of asetSis

denoted by |S]
Zy ={i| ged(i,N)=1}

gcd(X,Y) =1 if greatest common divisor of XY is 1

RSA math

Zy ={i| gcd(i,N)=1}

N=13 Z; ={1,2,3,4,56,7,8,9,10,11,12 }

N =15 Z,- ={1,2,4,7,8,11,13,14 }

Def. &(N)=|Zy| (Thisis Euler’s totient function)

®(13) = 12

b(15) = 8 Zoas) = Zs = {1,3,57)

RSA math

Zy ={i| ged(i,N)=1}
Zy is a group under modular multiplication

Fact. For any a,N with N > 0, there exists unique qg,r
such that
a=Nqg+r and O0<r<N

17 mod 15 =2
Def. amodN=r €Z, 105 mod 15=0

Def. a = b (modN) iff (a mod N)= (b modN)

RSA math

Zy ={i| ged(i,N)=1}
Zy is a group under modular multiplication

Z;. ={1,2,4,7,8,11,13,14)

2¢7 = 14 (mod 15)
48 2 (mod 15)

Closure: foranya,b € Z, a*b modNe Z,

Def. a'mod N =a®a®a°*..*a mod N

\\ v
Y

I times

RSA math

Zy ={i| gcd(i,N)=1}

Claim: Suppose e,d € Zy, satisfying ed mod ¢(N) =1
then for any x e Zy we have that
(x¢)9 mod N = X

(Xe)d mod N = x(ed mod ¢(N)) mod N First equality is
1 by Euler’s Theorem
xt mod N

= xmodN

RSA math

Zy ={i| gcd(i,N)=1}

Claim: Suppose e,d € Zy, satisfying ed mod ¢(N) =1
then for any x e Zy we have that
(x¢)9 mod N = X

Z,- ={1,2,4,7,8,11,13,14 } Zc];(15) =1{1,3,5,7}

e=3,d=3 gives edmod8=1

X 1 2 4 7 8 11 13 14

x>mod 15 |1 8 4 13 2 11 7 14

The RSA trapdoor permutation
pk =(N,e) sk = (N,d) with ed mod ¢(N) =1

fN,e(X) =x*mod N gN’d(Y) = yd mod N

easy given N,e

'Y
- p

S

hard given N,e
easy given N,d

The RSA trapdoor permutation
pk = (N,e) sk =(N,d) with ed mod ¢(N) =1
fye(X) =x¢mod N gn.aly) =y9 mod N
But how do we find suitable N,e,d ?
If p,q distinct primes and N = pg then ¢(N) = (p-1)(g-1)

Encrypt/decrypt with SK: C=m® mod N
Encrypt/decrypt with PK: M = c® mod N

Key generation: find large primes P, Q

Public-key encryption

key generation

Re—> Kg

Enc —> C C—> Dec —> MoOr
M—> error

Cis a ciphertext

Correctness: D(sk, E(pk,M,R)) =M with probability 1 over randomness used

PKCS #1 RSA encryption

Kg outputs (N,e),(N,d) where [N|g=n
Let B = {0,1}3/ {00} be set of all bytes except 00
Want to encrypt messages of length [M|g=m

(N,e)

!

Enc

(N,d)

C —> Dec

M or
error

Enc((N,e), M, R)

pad = first n - m - 3 bytes from R that
arein B

X=00]||02]||pad || 00 || M

Return X* mod N

Dec((N,d), C)

X=C'modN ; aa||bb||w=X

If (aa # 00) or (bb # 02) or (00¢w)
Return error

pad || 00 || M=w

Return M

Hybrid encryption

Kg outputs (pk,sk)

pk

!

Enc — C

sk

M or
error

C —> Dec

Enc(pk, M, R)

K||R1||R2=R
C1 = Enc(pk,K,R1)
C2 = Enc(K,M,R2)
Return (C1,C2)

Dec(sk, (C1,C2))

K = Dec(sk,C1)
M = Dec(K,C2)
Return M

TLS handshake for
Bank customer RSA transport Bank

Pick random Ne ClientHello, MaxVer, Nc, Ciphers/CompMethods N

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod ~ Pickrandom Ns

<€

Check CERT
using CA public <
verification key

CERT = (pk of bank, signature over it)

Pick random PMS
C <- E(pk,PMS)

ChangeCipherSpec,
Q { Finished, PRF(MS, “Client finished” | | H(transcript)) }
=

ChangeCipherSpec,

PMS <- D(sk,C)

Bracket notation { Finished, PRF(MS, “Server finished” | | H(transcript’)) }
means contents |
encrypted

MS <- PRF(PS, “master secret” || Nc || Ns)

Factoring composites

e Whatis p,gfor N=9017

Factor(N):
fori=2, ..

, sqrt(N) do

if N modi=0then

p=i

q=N/p
Return (p,q)

Woops... we can always factor

But not always efficiently:
Run time is sqrt(N)

O(sqrt(N)) = O(e0> niN)

Factoring composites

Algorithm Time to factor N
Naive O(e0>n(N))
Quadratic sieve (QS) O(e®)

c=d (In N)¥2 (In In N)/2

Number Field Sieve (NFS) O(e®)
c=1.92 (In N)¥3 (In In N)?/3

Factoring records

Algorithm Year Algorithm Time
RSA-400 1993 QS 830 MIPS

years
RSA-478 1994 QS 5000 MIPS

years
RSA-515 1999 NFS 8000 MIPS

years
RSA-768 2009 NFS ~2.5 years
RSA-1024 Note yet

RSA-x is an RSA challenge modulus of size x bits

TLS handshake for
Bank customer RSA transport Bank

Pick random Ne ClientHello, MaxVer, Nc, Ciphers/CompMethods N

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod ~ Pickrandom Ns

<€

Check CERT
CERT = (pk of bank, signature over it)

using CA public <
verification key w

C

Pick random PMS
C <- E(pk,PMS)

PMS <- D(sk,C)

ChangeCipherSpec,
{ Finished, PRF(MS, “Client finished” | | H(transcript)) }

=
ChangeCipherSpec,
Bracket notation { Finished, PRF(MS, “Server finished” | | H(transcript’)) }
means contents <€
encrypted

MS <- PRF(PS, “master secret” || Nc || Ns)

Digital signatures

key generation

Re—> Kg

Y Y

R =

Sigh —> S Ver —> 0/1

M—> S —

Anyone with public key can verify a signature
Only holder of secret key should be able to generate a signature

Full Domain Hash RSA

Kg outputs pk = (N,e) , sk =(N,d) H is a hash function
N,d ,
" Sign((N,d), M
X=00 [| H(1] M) || ... || H(k| M)
M—> Sign —> S S=X“mod N
Return S
pk Ver((N,e), M, S)
) X =S¢ mod N
M —> X'=00 || H(L[|IM) [] ... [| H(k[|M)
¢, Ver —>0/1 Hfx=x then
Return 1
Return O

Certificate Authorities and

Public-key Infrastructure

(pk,sk) & o
%I]Slgn@ Give me a certificate

V M = (pK’ data) Nrpk, please

M = (pk’,data)
If Ver(pk,M,S)
trust pk’

S = Sign(sk,M) S http://amazon.com

pk’, data, S

(pk’,sk’)

then
This prevents man-in-the-middle (MitM)

attacks

