
CS642:
Computer Security

University of Wisconsin CS 642

MACs, Passwords and
Asymmetric encryption

University of Wisconsin CS 642

Asymmetric encryption

Digital signing & public-key infrastructure

Password encryption

PKCS #1 encryption

The RSA algorithm

Hybrid encryption

MACs

Hash functions and message
authentication

Hash function H maps arbitrary bit string to fixed length string of
size m

H
MD5: m = 128 bits
SHA-1: m = 160 bits
SHA-256: m = 256 bits

M H(M)

Some security goals:
- collision resistance: can’t find M != M’ such that H(M) = H(M’)
- preimage resistance: given H(M), can’t find M
- second-preimage resistance: given H(M), can’t find M’ s.t.

H(M’) = H(M)

Hash function application example

Password hashing. Choose random salt and store (salt,h) where:

Hsalt || pw h

The idea: Attacker, given (salt,h), should not be able to recover pw

Or can they?

For each guess pw’:
If H(salt||pw’) = h then

Ret pw’

Message authentication

Tag Ver

Kg

key generation

Rk

K

R
M

T
T

0 or 1

Correctness: Ver(K , Tag(K,M,R)) = 1 with probability 1 over randomness used

Optional. If no
randomness, then called
a Message Authentication
Code (MAC)

M

Unforgeability: Attacker can’t find M’,T such that V(K,M’,T) = 1

Recall PRF security

F: {0,1}k x {0,1}* -> {0,1}n

Security goal: F(K,M) is indistinguishable from random n-bit string
for anyone without K

F(K,M1) , F(K,M2), … , F(K,Mq) U1, U2, … , Uq

For M1, M2, … , Mq chosen
by adversary and distinct Ui is fresh n-bit uniform string

Adversary that adaptively chooses messages but is limited to
“reasonable” q (e.g., q = 240) can’t distinguish between two vectors

This means outputs of F are unpredictable:
Given F(K,M1) , F(K,M2), … , F(K,Mq-1) no attacker can
predict F(K,Mq) with probability 1 / 2n + negligible

Any PRF is a good MAC

Tag Ver

KgRk

K

R

M
T

T
0 or 1

Correctness: Ver(K , Tag(K,M,R)) = 1 with probability 1 over randomness used

Optional. If no

randomness, then called

a Message Authentication

Code (MAC)

M

Unforgeability: Attacker can’t find M’,T such that V(K,M’,T) = 1

Any PRF is a good MAC

F(K,M) F(K,M) = T?

Kg key generation picks uniform key for FRk

K

M T
T

0 or 1
M

How do we instantiate F?

Attempt 1
Use a hash function H to build MAC.
Kg outputs uniform bit string K

HK || M T

To verify a M,T pair, check if HMAC(K,M) = T

Tag(K,M) = HMAC(K,M) defined by:

But: what if I want to append: HMACK(K, M||M’) by continuing hash

Message authentication with HMAC
Use a hash function H to build a MAC.
Kg outputs uniform bit string K

HK ipad || M

TK opad || h H

ipad != opad are constants

To verify a M,T pair, check if HMAC(K,M) = T

Tag(K,M) = HMAC(K,M) defined by:

Unforgeability holds if H is a secure PRF when so-keyed

Build a new scheme from CBC and HMAC
Kg outputs CBC key K1 and HMAC key K2

CBC

M

K1 HMAC K2

C T

CBC

M

HMAC

C

Several ways to combine:
(1) encrypt-then-mac
(2) mac-then-encrypt
(3) encrypt-and-mac

M || T

K2K1CBC

M

HMAC

C

K2K1

T

(1)

(2)(3)

Build a new scheme from CBC and HMAC
Kg outputs CBC key K1 and HMAC key K2

CBC

M

K1 HMAC K2

C T

Several ways to combine:
(1) encrypt-then-mac
(2) mac-then-encrypt
(3) encrypt-and-mac

(1)

Thm. If encryption scheme provides confidentiality against
passive attackers and MAC provides unforgeability, then
Encrypt-then-MAC provides secure authenticated encryption

MAC

SQN +
comp method

Payload

Padding

Encrypt

Ciphertext

MAC tagPayload

Header

TLS record protocol: MAC-Encode-Encrypt (MEE)

MAC HMAC-MD5, HMAC-SHA1, HMAC-SHA256

Encrypt CBC-AES128, CBC-AES256, CBC-3DES, RC4-128

Padding is not MAC’d.
Implementations must
handle padding checks
very carefully.

Dedicated authenticated encryption schemes

Attack Inventors Notes
OCB
(Offset Codebook)

Rogaway One-pass

GCM
(Galios Counter
Mode)

McGrew, Viega CTR mode plus specialized MAC

CWC Kohno, Viega, Whiting CTR mode plus Carter-Wegman
MAC

CCM Housley, Ferguson,
Whiting

CTR mode plus CBC-MAC

EAX Wagner, Bellare,
Rogaway

CTR mode plus OMAC

Symmetric Encryption Advice

Passive security is almost never good enough!!

Never use CTR mode or CBC mode by themselves

Encrypt-then-MAC better than MAC-then-Encrypt,
Encrypt and MAC

Dedicated modes that have been analyzed thoroughly
are also good

Password-based symmetric encryption

Enc Dec

pw

R
M

C C M or
error

C is a ciphertext

Correctness: D(pw , E(pw,M,R)) = M with probability 1 over randomness used

Optional

EK1 EK1 EK1

M2 M3M1

C2 C3C1

IV

C0

HK2 ipad || C

TK2 opad || h H

Ciphertext is C,T How do we use with a pw?

Encrypt-then-MAC with CBC and HMAC

Password-based Key Deriviation
(PBKDF)

H H H…pw || salt || 1 K1

H H H…pw|| salt || 2 K2

Truncate if
needed

repeat c times

PBKDF(pw,salt):

PBKDF + Symmetric encryption yields
PW-based encryption

Enc(pw,M,R):
salt || R’ = R
K = PBKDF(pw,salt)
C = Enc’(K,M,R’)
Return (salt,C)

Here Enc’ is a normal
symmetric encryption
scheme (CBC+HMAC)

Attacks?

Dec(pw,C):
salt || C’ = C
K = PBKDF(pw,salt)
M = Enc’(K,C’)
Return M

4< >Imperva White Paper

Consumer Password Worst Practices

3. Recommendation: It should not be a name, a slang word, or any word in the dictionary. It should not include
any part of your name or your e-mail address.

 Almost all of the 5000 most popular passwords, that are used by a share of 20% of the users, were just that –
names, slang words, dictionary words or trivial passwords (consecutive digits, adjacent keyboard keys, and so
on). The most common password among Rockyou.com account owners is “123456”. The runner up is “12345”. The
following table depicts the top 20 common passwords in the database list:

Password Popularity – Top 20

Rank Password Number of Users with
Password (absolute)

1 123456 290731

2 12345 79078

3 123456789 76790

4 Password 61958

5 iloveyou 51622

6 princess 35231

7 rockyou 22588

8 1234567 21726

9 12345678 20553

10 abc123 17542

Rank Password Number of Users with
Password (absolute)

11 Nicole 17168

12 Daniel 16409

13 babygirl 16094

14 monkey 15294

15 Jessica 15162

16 Lovely 14950

17 michael 14898

18 Ashley 14329

19 654321 13984

20 Qwerty 13856

 If a hacker would have used the list of the top 5000 passwords as a dictionary for brute force attack on Rockyou.
com users, it would take only one attempt (per account) to guess 0.9% of the users passwords or a rate of one
success per 111 attempts. Assuming an attacker with a DSL connection of 55KBPS upload rate and that each
attempt is 0.5KB in size, it means that the attacker can have 110 attempts per second. At this rate, a hacker will
gain access to one new account every second or just less than 17 minutes to compromise 1000 accounts. And the
problem is exponential. After the first wave of attacks, it would only take 116 attempts per account to compromise
5% of the accounts, 683 attempts to compromise 10% of accounts and about 5000 attempts to compromise 20%
of accounts. The following diagram depicts the expected effectiveness of attacks using a small, carefully chosen,
attack dictionary:

Accumulated Percent of Dictionary Attack Success

0

5%

10%

15%

20%

1
35

9
71

7
10

75
14

33
17

91
21

49
25

07
28

65
32

23
35

81
39

39
42

97
46

55

Number of password tries

From an Imperva study of
released RockMe.com
password database
2010

Brute-force attacks

• Given known plaintext, ciphertext pair:
–M and C = Enc(pw,M)

• Enumerate a dictionary D of possible
passwords, in order of likelihood

BruteForce1(M,C):
R || C’ = C
foreach pw* in D do

C* = Enc(pw*,M,R)
If C* = C’ then

Return pw*
EK1

M1

C1

IV

C0

R is salt||IV in CBC-based modes
Both are public:
C = salt || IV || C1 ||…

Brute-force attacks

• Given known plaintext, ciphertext pair:
–M and C = Enc(pw,M)

• Enumerate a dictionary D of possible
passwords, in order of likelihood

BruteForce1(M,C):
R || C’ = C
foreach pw* in D do

C* = Enc(pw*,M,R)
If C* = C’ then

Return pw*

BruteForce2(C):
foreach pw* in D do

M* = Dec(pw*,C)
If M* “looks right” then

Return (pw*,M*)

PBKDF design attempts to slow down
brute-force attacks

H H H…pw || salt || 1 K1

Truncate if
needed

Salts:
Different derived keys, even if same password
Slows down attacks against multiple users
Prevents precomputation attacks, if salts chosen correctly

Iterating c times should slow down attacks by factor of c

Say c = 4096. Generous back of envelope* suggests that in 1 second,
can test 252 passwords and so a naïve brute-force:

6 numerical digits 106 =
1,000,000

~ 3968 seconds

6 lower case
alphanumeric digits

366 =
2,176,782,336

~ 99 days

8 alphanumeric +
10 special symbols

728 =
722,204,136,308,736

~ 33million days

* I did the arithmetic…

Password recap
• Short passwords can be cracked easily
– See also: JohnTheRipper, aircrack, tools

• Salting and iteration are helpful and needed
– Salts must be sufficiently large and unpredictable
– Still possible to crack in some cases

Asymmetric Encryption
• Idea: trapdoor function
– Easy to compute in one direction
– Difficult to compute in opposite direction without

knowledge
• Example: padlock
– Easy to lock without key
– Hard to open

• Other examples: Large composite numbers
– Easy to multiple
– Hard to factor

X fpk(X)

easy given pk

hard given pk
easy given sk

Asymmetric Encryption: Trapdoor function

The RSA trapdoor function
• Rivest, Shamir, Adleman 1978
• Garnered them a Turing award

RSA math

p and q be large prime numbers
N = pq
N is called the modulus

p = 7, q = 13, gives N = 91

p = 17, q = 53, gives N = 901

RSA math

p and q be large prime numbers
N = pq
N is called the modulus

ZN = {0,1,2,3,…, N-1} The size of a set S is
denoted by |S|

*

gcd(X,Y) = 1 if greatest common divisor of X,Y is 1

ZN = { i | gcd(i,N) = 1 }

RSA math
*

N = 13 Z13 = { 1,2,3,4,5,6,7,8,9,10,11,12 }*

N = 15 Z15 = { 1,2,4,7,8,11,13,14 }*

Def. φ(N) = |ZN| (This is Euler’s totient function)*

φ(13) =

φ(15) =

12

8

ZN = { i | gcd(i,N) = 1 }

Zφ(15) = Z8 = { 1,3,5,7 }* *

RSA math

ZN = { i | gcd(i,N) = 1 }*

ZN is a group under modular multiplication*

Fact. For any a,N with N > 0, there exists unique q,r
such that

a = Nq + r and 0 ≤ r < N

Def. a mod N = r ZN2
17 mod 15 = 2

105 mod 15 = 0

Def. a b (mod N) iff (a mod N) = (b mod N)⌘

RSA math

ZN = { i | gcd(i,N) = 1 }*

ZN is a group under modular multiplication*

2�7 14 (mod 15)⌘
4�8 2 (mod 15)⌘

Z15 = { 1,2,4,7,8,11,13,14 }*

Closure: for any a,b ZN a�b mod N ZN2 2

Def. ai mod N = a�a�a�…�a mod N

i times

* *

RSA math

ZN = { i | gcd(i,N) = 1 }*

Claim: Suppose e,d Zφ(N) satisfying ed mod φ(N) = 1
then for any x ZN we have that

(xe)d mod N = x

*2
2 *

(xe)d mod N = x(ed mod φ(N)) mod N
= x1 mod N
= x mod N

First equality is
by Euler’s Theorem

RSA math

ZN = { i | gcd(i,N) = 1 }*

Claim: Suppose e,d Zφ(N) satisfying ed mod φ(N) = 1
then for any x ZN we have that

(xe)d mod N = x

*2
2 *

Z15 = { 1,2,4,7,8,11,13,14 }*

e = 3 , d = 3 gives ed mod 8 = 1

Zφ(15) = { 1,3,5,7 }*

x 1 2 4 7 8 11 13 14

x3 mod 15 1 8 4 13 2 11 7 14

X fpk(X)

easy given N,e

hard given N,e
easy given N,d

The RSA trapdoor permutation

pk = (N,e) sk = (N,d) with ed mod φ(N) = 1

fN,e(x) = xe mod N gN,d(y) = yd mod N

pk = (N,e) sk = (N,d) with ed mod φ(N) = 1

fN,e(x) = xe mod N gN,d(y) = yd mod N

But how do we find suitable N,e,d ?

If p,q distinct primes and N = pq then φ(N) = (p-1)(q-1)

The RSA trapdoor permutation

Encrypt/decrypt with SK: C = me mod N
Encrypt/decrypt with PK: M = cd mod N

Key generation: find large primes P, Q

Public-key encryption

Enc Dec

Kg

key generation

Rk

pk

R
M

C C M or
error

C is a ciphertext

Correctness: D(sk , E(pk,M,R)) = M with probability 1 over randomness used

sk

PKCS #1 RSA encryption

Enc
R
M

C

DecC M or
error

(N,e)

(N,d)

Kg outputs (N,e),(N,d) where |N|8 = n
Let B = {0,1}8 / {00} be set of all bytes except 00
Want to encrypt messages of length |M|8 = m

Enc((N,e), M, R)
pad = first n - m - 3 bytes from R that

are in B
X = 00 || 02 || pad || 00 || M
Return Xe mod N

Dec((N,d), C)
X = Cd mod N ; aa||bb||w = X
If (aa ≠ 00) or (bb ≠ 02) or (00 w)

Return error
pad || 00 || M = w
Return M

/2

Hybrid encryption
Kg outputs (pk,sk)

Enc
R
M

C

DecC M or
error

pk

sk

Enc(pk, M, R)
K||R1||R2 = R
C1 = Enc(pk,K,R1)
C2 = Enc(K,M,R2)
Return (C1,C2)

Dec(sk, (C1,C2))
K = Dec(sk,C1)
M = Dec(K,C2)
Return M

TLS handshake for
RSA transportBank customer Bank

PMS <- D(sk,C)

ClientHello, MaxVer, Nc, Ciphers/CompMethods

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod

CERT = (pk of bank, signature over it)
Check CERT
using CA public
verification key

Pick random Nc

Pick random Ns

Pick random PMS
C <- E(pk,PMS)

C

ChangeCipherSpec,
{ Finished, PRF(MS, “Client finished” || H(transcript)) }

ChangeCipherSpec,
{ Finished, PRF(MS, “Server finished” || H(transcript’)) }

MS <- PRF(PS, “master secret” || Nc || Ns)

Bracket notation
means contents
encrypted

Factoring composites

• What is p,q for N = 901?

Factor(N):
for i = 2 , … , sqrt(N) do

if N mod i = 0 then
p = i
q = N / p
Return (p,q)

Woops… we can always factor

But not always efficiently:
Run time is sqrt(N)

O(sqrt(N)) = O(e0.5 ln(N))

Factoring composites

Algorithm Time to factor N

Naïve O(e0.5 ln(N))

Quadratic sieve (QS) O(ec)
c = d (ln N)1/2 (ln ln N)1/2

Number Field Sieve (NFS) O(ec)
c = 1.92 (ln N)1/3 (ln ln N)2/3

Factoring records

Algorithm Year Algorithm Time

RSA-400 1993 QS 830 MIPS
years

RSA-478 1994 QS 5000 MIPS
years

RSA-515 1999 NFS 8000 MIPS
years

RSA-768 2009 NFS ~2.5 years

RSA-1024 Note yet

RSA-x is an RSA challenge modulus of size x bits

TLS handshake for
RSA transportBank customer Bank

PMS <- D(sk,C)

ClientHello, MaxVer, Nc, Ciphers/CompMethods

ServerHello, Ver, Ns, SessionID, Cipher/CompMethod

CERT = (pk of bank, signature over it)
Check CERT
using CA public
verification key

Pick random Nc

Pick random Ns

Pick random PMS
C <- E(pk,PMS)

C

ChangeCipherSpec,
{ Finished, PRF(MS, “Client finished” || H(transcript)) }

ChangeCipherSpec,
{ Finished, PRF(MS, “Server finished” || H(transcript’)) }

MS <- PRF(PS, “master secret” || Nc || Ns)

Bracket notation
means contents
encrypted

Digital signatures

Sign Ver

Kg

key generation

Rk

sk

R
M

S
S

0 / 1

pk

M

Anyone with public key can verify a signature
Only holder of secret key should be able to generate a signature

Full Domain Hash RSA

Sign

Ver

(N,d)

M S

S
0 / 1

pk

M

Kg outputs pk = (N,e) , sk = (N,d)

Sign((N,d), M)
X = 00 || H(1||M) || … || H(k||M)
S = Xd mod N
Return S

Ver((N,e), M, S)
X = Se mod N
X’ = 00 || H(1||M) || … || H(k||M)
If X = X’ then

Return 1
Return 0

H is a hash function

Certificate Authorities and
Public-key Infrastructure

http://amazon.com

(pk,sk)

(pk’,sk’)

Give me a certificate
for pk’, pleaseM = (pk’,data)

S = Sign(sk,M) S

pk’, data, S

M = (pk’,data)
If Ver(pk,M,S) then

trust pk’

pk

This prevents man-in-the-middle (MitM)
attacks

