DNS

CS642: Computer Security

128.105.5.31

We don't want to have to remember IP addresses

```
[rist@seclab1] (17)$ head hosts
        Wisconsin CS Local Host Table
                localhost
127.0.0.1
128.105.6.39
                smtp.cs.wisc.edu smtp
128.105.6.40
                spam.cs.wisc.edu spam spam-test
128.105.6.42
                spam.cs.wisc.edu spam spam-test
128.105.6.38
                spam.cs.wisc.edu spam spam-test
                ge-5-1.cisco-border1.cs.wisc.edu ge-5-1.cisco-border1
128.105.1.1
128, 105, 1, 2
                ge-1-2.cisco1.cs.wisc.edu ge-1-2.cisco1
[rist@seclab1]
               (18)$
```

Early days of ARPANET: manually managed hosts.txt served from single computer at SRI

Heirarchical domain name space

max 63 per element

Zones

Domain Name Space

From

https://en.wikipedia.org/wiki/Domain_Name_System

Resolving names

- Clients configured with initial name servers
- Iterative: clients follow referrals to lookup name at next server
- Recrsive: NS does lookup on behalf of client, caches results

From

http://en.wikipedia.org/wiki/File:An_example_of_theoretical_DNS_recursion.

Example DNS query types

A	address (get me an IPv4 address)		
AAAA	IPv6 address		
NS	name server		
TXT	human readable text, has been used for some encryption mechanisms		
MX	mail exchange		

Authoritative vs Caching Name Servers

- Authoritative name server only returns names configured by an original source (e.g. admin)
 - Sets AA (authoritative answer) bit in response
- Caching name server may do lookups to other servers, return indirect/cached results
 - Speeds up queries
 - Both negative and positive responses
 - periodically times out. TTL set by data owner

DNS packet on wire

Query ID is 16-bit random value

We'll walk through the example from Friedl's document

From Friedl explanation of DNS cache poisoning, are following diagrams

Query from resolver to NS

linux.unixwiz.net dnsr1.sbcglobal.net

QR=1 - this is a response

AA=1 - Authoritative!

RA=O - recursion unavailable

bailiwick checking: response is cached if it is within the same domain of query (i.e. **a.com** cannot set NS for **b.**

Here we go again...

- What security checks are in place?
 - Random query ID's to link responses to queries
 - Bailiwick checking (sanity check on response)
- No authentication
 - DNSsec is supposed to fix this but no one uses it yet
- Many things trust hostname to IP mapping
 - Browser same-origin policy
 - URL address bar

What are clear problems?

- Corrupted nameservers
- Intercept & manipulate requests
- Other obvious issues?

DDoS against DNS

- Denial of Service
 - take down DNS server, clients can't use Internet
 - Feb 6, 2007 attack against 6 of 13 root servers:
 - 2 suffered very badly
 - Others experienced heavy traffic
- DoD purportedly has interesting response:
 - "In the event of a massive cyberattack against the country that was perceived as originating from a foreign source, the United States would consider launching a counterattack or bombing the source of the cyberattack, Hall said. But he noted the preferred route would be warning the source to shut down the attack before a military response."
 - http://www.computerworld.com/s/article/9010921/RSA_U.S._cyber_counterattack_Bomb_one_way_or_the_other

DNS cache poisoning

How might an attacker do this?
Assume DNS server uses predictable UDP port

Another idea:

- Poison cache for NS record instead
- Now can take over all of second level domain

How many tries does this require?

- Send flood
- Good chance of success in 10 seconds

Defenses

- Query ID size is fixed at 16 bits
- Repeat each query with fresh Query ID
 - Doubles the space
- Randomize UDP source port ports
 - Dan Bernstein's DJBDNS did this already
 - Now other implementations do, too
- DNSsec
 - Cryptographically sign DNS responses, verify via chain of trust from roots on down

DNSsec

- Authenticated DNS protocol
- Used by TLDs :)
- But no one else :(

DNSstat zone information categories						
Category	Description	Total Domains	DNSSEC Enabled	IPv6 Enabled		
internet2	Internet2 Members	<u>265</u>	<u>26 (9.8%)</u>	<u>117 (44.2%)</u>		
<u>esnet</u>	ESNet community	<u>11</u>	<u>10 (90.9%)</u>	<u>11 (100.0%)</u>		
<u>ivyleague</u>	The Ivy League	<u>8</u>	<u>1 (12.5%)</u>	<u>5 (62.5%)</u>		
<u>nysernet</u>	NYSERNet members	<u>30</u>	<u>0 (0.0%)</u>	<u>14 (46.7%)</u>		
<u>gigapop</u>	Internet2 GigaPoPs	<u>20</u>	<u>3 (15.0%)</u>	<u>16 (80.0%)</u>		
usnews 20	US News Top 20 universities	<u>20</u>	<u>3 (15.0%)</u>	<u>12 (60.0%)</u>		
times hied 50	Times Higher Ed Top 50	<u>50</u>	<u>10 (20.0%)</u>	<u>39 (78.0%)</u>		
<u>techcom</u>	Top Tech Companies	<u>62</u>	<u>10 (16.1%)</u>	<u>43 (69.4%)</u>		
<u>tld</u>	Top Level Domains	<u>1531</u>	<u>1399 (91.4%)</u>	<u>1506 (98.4%)</u>		
new gtld	New GTLD	1204	1204 (100.0%)	<u>1204</u> (<u>100.0%)</u>		
cctld	Country-Code Top Level Domains	304	<u>173 (56.9%)</u>	280 (92.1%)		
All	All domains in all categories	<u>1927</u>	<u>1452 (75.4%)</u>	<u>1714 (88.9%)</u>		

[https://www.huque.com/app/dnsstat/] retrieved: March 21, 2019

Phishing is common problem

- Typo squatting:
 - www.ca.wisc.edu
 - www.goggle.com
- Other shenanigans:
 - www.badguy.com/(256 characters of filler)/www.google.com
- Phishing attacks
 - These just trick users into thinking a malicious domain name is the real one

