Network reconnaissance
and Intrusion Detection

CS642.
Computer Security

University of Wisconsin CS 642



Let’s play over the network ...

Port scanning

Host fingerprinting, NMAP

Network IDS basics

Avoiding IDS

University of Wisconsin CS 642



Target acquisition

rganization
X

" backbone

How do we find vulnerable server(s) within a target organization?

Starting point: one or more publicly routable IP addresses
- WHOIS queries are good way to find them

- Can be used to identify blocks of IP addresses owned



WHOIS fun

[swift:~] whois 127.217.0.0
% IANA WHOIS server

% for more information on IANA, visit http://www.1iana.org
% This query returned 1 object

1netnum: 127.0.0.0 - 127.255.255.255
organisation: IANA - Loopback
status: RESERVED

remarks: 127.0.0.0/8 reserved for Loopback [RFC1122], section
remarks: 3.2.1.3. Reserved by protocol. For authoritative
remarks: registration, seeiana-ipv4-special-registry.

changed: 1981-@9
source: TANA




We've identified target (range of) IPs,
now what?

Host discovery

— Narrow broad swath of potential IPs to ones that have
hosts associated with them

Service discovery

— For a particular host, identify running services

— E.g., is it accepting SSH connections (22) or HTTP (80)?
OS fingerprinting

— ldentify the OS software version running

— E.g., Windows vs Linux?
Application fingerprinting

— same at higher level

— Apache version 1.3 or 2.0+7?



NMAP

* Network map tool

* De-facto standard for network
reconnaissance, testing

* Numerous built in scanning methods



Used in the Movies




nmap —PN —sT —p 22 192.168.1.0/24

-PN treat all hosts as up
-sT is tcp connect scan
-p 22 is port number

[swift:642/background] sudo nmap -PN -sT -p 22 192.168.0.0/24
Starting Nmap 7.70 ( https://nmap.org ) at 2019-04-01 19:20 CDT
Nmap scan report for 192.168.0.0

Host 1s up (0.000076s latency).

PORT  STATE SERVICE
22/tcp filtered ssh

Nmap scan report for 192.168.0.1
Host is up (0.0082s latency).

PORT  STATE SERVICE
22/tcp open ssh

Nmap scan report for 192.168.0.2
Host 1s up.

PORT  STATE SERVICE
22/tcp filtered ssh

Nmap scan report for 192.168.0.3
Host 1s up.




Some of the NMAP status messages

* open
— host is accepting connections on that port
* closed

— host responds to NMAP probes on port, but does
not accept connections

e filtered

— NMAP couldn’t get packets through to host on
that port.

— Firewall?



nmap —PN —sT —p 22 192.168.1.0/24

[swift:642/background] sudo nmap -PN -sT -p 22 192.168.0.0/24
Starting Nmap 7.70 ( https://nmap.org ) at 2019-04-01 19:20 CDT
Nmap scan report for 192.168.0.0

Host 1s up (0.000076s latency).

PORT  STATE SERVICE
22/tcp filtered ssh

Nmap scan report for 192.168.0.1
Host 1s up (0.0082s latency).

PORT  STATE SERVICE
22/tcp open ssh

Nmap scan report for 192.168.0.2
Host 1s up.

PORT  STATE SERVICE
22/tcp filtered ssh

Nmap scan report for 192.168.0.3
Host 1s up.




Port scan of host

[swift:642/background] sudo nmap 192.168.0.1
Starting Nmap 7.70 ( https://nmap.org ) at 2019-04-01 19:21 (DT
Nmap scan report for 192.168.0.1

Host 1s up (0.0044s latency).

Not shown: 968 closed ports, 28 filtered ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

1900/tcp open upnp

20005/tcp open btx

MAC Address: F4:F2:6D:2D:57:C6 (Tp-link Technologies)

Nmap done: 1 IP address (1 host up) scanned in 1.84 seconds




Service detection

[swift:642/background] sudo nmap -sV 192.168.0.1

Starting Nmap 7.70 ( https://nmap.org ) at 2019-04-01 19:22 (DT
Nmap scan report for 192.168.0.1

Host 1s up (0.0068s latency).

Not shown: 968 closed ports, 28 filtered ports

PORT STATE SERVICE VERSION

22/tcp open ssh Dropbear sshd 2012.55 (protocol 2.0)

80/tcp open http TP-LINK Archer (9 WAP http config

1900/tcp open upnp?

20005/tcp open btx?

MAC Address: F4:F2:6D:2D:57:Co (Tp-link Technologies)

Service Info: 0S: Linux; Device: WAP; CPE: cpe:/o:linux:linux_kernel, cpe:/h:tp-
link:archer_c9

GCentoo Linux: CVE-2012-0920: Dropbear: Multiple vulnerabilities

Severity: 7
Published: June 05, 2012

Use-after-free vulnerability in Dropbear SSH Server 0.52 through 2012.54, when command restriction and public key authentication are enabled, allows remote
authenticated users to execute arbitrary code and bypass command restrictions via multiple crafted command requests, related to "channels concurrency.”



OS fingerprinting

[swift:~] sudo nmap -0 192.168.0.1

Password:

Starting Nmap 7.70 ( https://nmap.org ) at 2019-04-01 19:23 (DT
Nmap scan report for 192.168.0.1

Host 1s up (0.0032s latency).

Not shown: 968 closed ports, 28 filtered ports

PORT STATE SERVICE

22/tcp open ssh

80/tcp open http

1900/tcp open upnp

20005/tcp open btx

MAC Address: F4:F2:6D:2D:57:C6 (Tp-link Technologies)
Device type: general purpose

Running: Linux 2.6.X

0S CPE: cpe:/o:linux:linux_kernel:2.6

0S details: Linux 2.6.31 - 2.6.35

Network Distance: 1 hop




Securing Internet Connections

Web server
/@< >
Inner Outer
firewall firewall
Customer
databases

DMZ (demilitarized zone) helps isolate public network
components from private network components

Firewall rules to disallow traffic from Internet to internal services



Intrusion Detection/Prevention
Systems

DS: monitor traffic, alert operator on attack
PS: prevent unsafe traffic from passing
Firewall: prevent unsafe packets from passing

Signature based

— Define some explicit traffic patterns as bad
— Flag them

— E.g., regular expressions

Anomaly detection

— What does “normal” traffic look like?

— Flag abnormal traffic



Taxonomy

e Approach: Policy vs Anomaly

e Location: Network vs. Host

 Action: Detect vs. Prevent

* Semantics: IP vs TCP vs App

Type Example

Host, Rule, IDS Tripwire

Host, Rule, IPS Personal Firewall

Net, Rule, IDS Snort

Net, Rule, IPS Network firewall

Host, Anomaly, IDS System call monitoring
Net, Anomaly, IDS Working set of connections
Net, Anomaly, IPS




Firewall Goals

Provide defense in depth by:
1. Blocking attacks against hosts and services
2. Control traffic between zones of trust



Logical Viewpoint

m

Inside

For each message m, either:
* Allow with or without modification
* Block by dropping or sending rejection notice

* Queue

18



Placement

Features:

Host-based Firewall * Faithful to local
configuration

* Travels with you

Firewall

Network-Based Firewall
> \
> \

7
e
e

Pd
:

Features:

* Protect whole network

e Can make decisions on all
of traffic (traffic-based

anomaly)

T ERE>d Outside




Parameters

Types of Firewalls Policies
1. Packet Filtering 1. Default allow
2. Stateful Inspection 2. Default deny

3. Application proxy



Recall: Protocol Stack

Application TCP\Header
(e.g., SSL) Application message - data
Transport
(e.g., TCP, UDP) data data
Network B Hend
(e.g., IP) sager =
Link Layer o m

(e.g., ethernet)

Link (Ethernet) Link (Ethernet)
Header Trailer

Physical

21



Stateless Firewall

e.g., ipchains in Linux 2.2

Filter by packet header fields
1. IP Field

Application (e.g., src, dst)
. 2. Protocol
Outside ransport (e.g., TCP, UDP, ...)
Network 3. Flags

(e.g., SYN, ACK)

Link Layer
Example: only allow incoming DNS packets to

nameserver A.A.A.A.

Firewall

Fail-safe good Deny UDP port 53 all
practice >

Allow UDP port 53 to A.A.A.A ]




Need to keep state
Example: TCP Handshake

Inside Firewall Outside

I SNc<—randc

Syn AN¢-0 Listening

Desired Policy: SNg¢—rands
Every SYN/ACK must SYN/ACK: an.csN.
have been preceded by
a SYN

Store SN, SN,

 SN<«—SN+1 Wait
ACK: AN<«SN,

Established

23



Stateful Inspection Firewall

e.g., iptables in Linux 2.4

Added state

Application (plus obligation to manage)
— Timeouts
Transport — Size of table

Outside
<

Network

Link Layer

24



Stateful More Expressive
Example: TCP Handshake

Inside Firewall QOutside
I SNc<—rand. : :
Record SN, in Syn AN<—0 Listening
table

SN d Store SN, SN
SYN/ACK: an.csh, o 2T

Verify AN, in ACK: SNeSNctl Wait
table AN<—SN;

Established

25



Stateful Firewalls

Pros

More expressive

Cons

e State-holding attack

 Mismatch between firewalls
understanding of protocol
and protected hosts



Outside

Application Firewall

Application

Transport

Network

Link Layer

{

Inside

Check protocol
messages directly

Clients connect to
firewall, firewall
connects to server

Examples:
— Web Proxies

27



Dual Firewall

Inside

Interior Exterior

Firewall Firewall

28



INTRUSION DETECTION AND
PREVENTION SYSTEMS



Logical Viewpoint

m

For each message m, either:
e Report m (IPS: drop or log)
e Allow m

* Queue

Inside

30



Overview

Approach: Policy vs Anomaly

Location: Network vs. Host

Action: Detect vs. Prevent

Semantics: “looks deeper”




Policy-Based IDS

Use pre-determined rules to detect attacks

Examples: Regular expressions (snort),
Cryptographic hash (tripwire, snort)

6etect any fragments less than 256 bytes
alert tcp any any -> any any (minfrag: 256; msg:
"Tiny fragments detected, possible hostile activity";)
Detect IMAP buffer overflow
alert tcp any any -> 192.168.1.0/24 143 (
content: "|90C8 COFF FFFF|/bin/sh";
\msg: "IMAP buffer overflow!”;)

~

/

Example Snort rules



OS Intrusion Detection via System Calls
[wagner&dean 2001]

f(int x) { open()
if(x){ getuid(); } else{ geteuid();} W‘__

X++;
}

g() {
fd = open("foo", O_RDONLY);
f(0); close(fd); f(1);
exit(0);

}

Execution inconsistent with automata indicates attack

33



Anomaly Detection

4 N

Safe

New Event )

4

Distribution of Attack
“normal” events

IDS




Example: Working Sets

Days 1 to 300 Day 300
: outside
working set Bl working set
of hosts | :




Anomaly Detection

Pros Cons

* Does not require pre- * Requires attacks are not
determining policy strongly related to known
(an “unknown” threat) traffic

e Learning distributions is
hard



ATTACKS AND EVASION



State Holding Attack
Assume stateful TCP policy

2. Exhaust « Syn
Resources ( Syn 1. Syn

" Flood

Syn

<€

3. Sneak Packet

38



Fragmentation

IP Hdr DF=0 | MF=1| ID=0 | syl

IP Hdr DF=0 | MF=1| ID=n | 83

IP Hdr DF=1 | MF=0 | ID=2n | F¢l4<

DF : Don’t fragment Octet 1 Octet 2 Octet 3 Octet 4
(0 = May, 1 = Don’t) Ver | IHL TOS Total Length

MF: More fragments o o|D[M D

(0 = Last, 1 = More) FlEF rag

Frag ID = Octet number .




Reassembly

IPHdr | DF=0
IPHdr | DF=0
IPHdr | DF=1-

40



Overlapping Fragment Attack

Assume Firewall Policy:

M Incoming Port 80 (HTTP)
Incoming Port 22 (SSH)

Packet 1 DF=1 | MF=1 1234 80
(src port) (dst port)
o2 [ I R IR £

Octetl Octet2 Octet3 Octet4
1234 22 Bypass polic
TCP Hdr (eI |
Sequence Number

(Data!)

41



TTL attack example

(10 hops)
seq=6...9 |
| (18 hops)
ttl=20 | USER | —
10 ..13 |
Attacker 112 | nice | > Victim
| ttl expires
\ USER| root
10 ..13 |
ttI=20 | root 1 -
|
|
|
|
|

USER| nice| ?

W USER| root| ?

Monitor

Figure 2: A TTL-based evasion attack on an intrusion detec-
tion system

From Paxson, “Bro: A System for Detecting Network Intruders in Real-Time”, 1999



Fragmentation overlap attack

NIDS sees:
AllITI|IT IX' | Cl|IK
‘NIDS \
Internet ‘ !Host ‘
Attacker’s data stream End-host sees:
AlITIITIIA ]I ClIK AIITIITIIA IX' ClIK
same TCP seq #

or same IP frag offset



Potential Fix: traffic normalizer

Introduce “bump in the wire”: traffic normalizer to
evade protocol ambiguities

[NiDs |

@ I Normalizer I ‘ I Host ‘




Key problem

* |[DS may not see what hosts see

— Different packet orders
— Different packets (TTL)

— Resolve ambiguities differently (fragments)




Algorithmic complexity attacks

« DoS attack on IDS enables other attacks to
remain undetected

 Example: hash tables

Bucket

ol P P

1

21 P

3 >

4| B P P
5

Figure 1: Normal operation of a hash table.

From: Denial of Service via Algorithmic Complexity Attacks



DETECTION THEORY



How hard is it to detect anomalies

 Given normal events, how accurate does a
detector have to be?



Let Q be the set of all possible events.
For example:
* Audit records produced on a host
* Network packets seen




() Example: IDS Received 1,000,000 packets.
20 of them corresponded to an intrusion.

The intrusion rate Pr[l] is:
Pr[l] = 20/1,000,000 =.00002

Intrusion Rate:
_

Set of intrusion Pr[]

events | (Y]

51




Sound: Alerts are all intrusions

Defn: Sound
AC]T

Alert Rate:
_ 4
Q)

Set of alerts A Pr[A]

52



Complete: All intrusions generate alerts

Defn: Complete

I CA

53



Defn: False Negative Defn: False Positive

IN-A

Defn: True Positive
ANI

ANn-I

Defn: True Negative
—(AUI)




() Think of the detection rate as the set of
intrusions raising an alert normalized by
the set of all intrusions.

Defn: Detection rate
Pr|A N I]
Pr|I]

Pr[A[]] =

55



Example

0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

City

(this times 10)

1,000 people in the city

e 1 isaterrorist, and we have

their pictures. Thus the base
rate of terrorists is 1/1000

 Suppose we have a new

terrorist facial recognition
system that is 99% accurate.
— 99/100 times when someone

is a terrorist there is an
alarm

— For every 100 good people,
the alarm only goes off once.

e An alarm went off. Is the

suspect really a terrorist?



Example

ognition
That

®
e

lva 1%

is not the

!

Answer: The facia
e
| S

system is 99%
means t

cha

te

/000 oooooo/

QQQQQQOQQQ
0000000000
0000000000
0000000000
0000000000
0000000000
0000000000

City

0000000000
/NWQQQQQQQQ\\

(this times 10)

57



Formalization

0000000000
Seessesses
0000000000
Seessenses
_ sssussesss

City

//00000000‘;\
0000000000

(this times 10)

1 is terrorists, and we have
their pictures. Thus the base
rate of terrorists is 1/1000.
P[T] = 0.001

99/100 times when someone

is a terrorist there is an alarm.

P[A|T] =.99

For every 100 good guys, the

alarm only goes off once.
P[A | notT] =.01

Want to know P[T|A]

58



Intuition: Given 999 good guys, we

have 999*.01 = 9-10 false alarms

1 isterrorists, and we have
their pictures. Thus the base
rate of terrorists is 1/1000.
P[T] = 0.001

99/100 times when someone
is a terrorist there is an alarm.
P[A|T] =.99

For every 100 good guys, the
alarm only goes off once.
P[A | notT] =.01

@nt to know P[TID

00000000‘;\

0000000000
0000000000
0000000000
o 0000000000
* gasnsnsess
0000000000
0000000000
\\00000000!’/

False
alarms

this times 10)



Have: Pr|T] = 0.001
Pr[A|T] = .99, Pr[A|-T] = .01

Pr|T N A]
i

Want to calculate: Pr|T|A] =

60



Calculating Probabilities

* Probability of an alert and a terrorist is:

— Probability of an alert given a terrorist * probability of
a terrorist

— Pr[ANT] = Pr[A|T]*P[T]
* Probability of an alert is:

— Probability of an alert given a terrorist * probability of
a terrorist

— Probability of an alert given not a terrorist *
probability not a terrorist

— Pr[A] = Pr[T]* Pr[A|T] + Pr[-T] * Pr[A]|-T]



Have: Pr|T] = 0.001
Pr[A|T] = .99, Pr[A|-T] = .01

Pr|T N A]

Want to calculate: Pr|T|A] = PriA

Pr|A|T]+Pr|T]
Pr|T|«Pr|A|T]|+Pr|-T]+Pr[A|-T]

62



Probability alert finds terrorist

Have: Pr[T] = 0.001
Pr|A|T| = .99, Pr[A|-T] = .01

Want to calculate: Pr[T'|A| = Pr{A|T]+Pr|T]

Pr|T]*«Pr|A|T]|+Pr|—T]+Pr[A|-T]
99 % .001
001 % .99 4- .999 x .01

o
With Pr[A|T] = 0.999, still only
50% of alerts are terrorists

63



Why is anomaly detection hard

For infrequent events: must be very accurate to
avoid false positives

Using anomaly detection:
- Easy to learn common and legal events

- Hard to learn rare but legal events

Bottom line: decide how bad are false positives?



Conclusion

Firewalls
— Ttypes: Packet filtering, Stateful, and Application
— Placement and DMZ

IDS
— Anomaly vs. policy-based detection

How can we exploit for evasion?
— E.g., fragmentation, TCP session reassembly, TTL

How can we attack the defense infrastructure?
— E.g., overload, algorithmic complexity

Detection theory
— Base rate fallacy



