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Let’s play over the network … 

Network IDS basics

Host fingerprinting, NMAP

Port scanning

Avoiding IDS



Target acquisition

backbone

Organization 
X

ISP

How do we find vulnerable server(s) within a target organization?

Starting point: one or more publicly routable IP addresses

- WHOIS queries are good way to find them

- Can be used to identify blocks of IP addresses owned



WHOIS fun



We’ve identified target (range of) IPs, 
now what?

• Host discovery
– Narrow broad swath of potential IPs to ones that have 

hosts associated with them
• Service discovery
– For a particular host, identify running services
– E.g., is it accepting SSH connections (22) or HTTP (80)?

• OS fingerprinting
– Identify the OS software version running 
– E.g., Windows vs Linux?

• Application fingerprinting
– same at higher level 
– Apache version 1.3 or 2.0+?



NMAP

• Network map tool
• De-facto standard for network 

reconnaissance, testing
• Numerous built in scanning methods



Used in the Movies



nmap –PN –sT –p 22  192.168.1.0/24
-PN  treat all hosts as up
-sT is tcp connect scan
-p 22 is port number



Some of the NMAP status messages

• open
– host is accepting connections on that port

• closed
– host responds to NMAP probes on port, but does 

not accept connections
• filtered
– NMAP couldn’t get packets through to host on 

that port. 
– Firewall?



nmap –PN –sT –p 22  192.168.1.0/24



Port scan of host



Service detection



OS fingerprinting



Internet

Securing Internet Connections

DMZ (demilitarized zone) helps isolate public network 
components from private network components

Outer
firewall

Inner
firewall

Web server

IDS
Customer
databases

Firewall rules to disallow traffic from Internet to internal services



Intrusion Detection/Prevention 
Systems

• IDS: monitor traffic, alert operator on attack
• IPS: prevent unsafe traffic from passing
• Firewall: prevent unsafe packets from passing

• Signature based
– Define some explicit traffic patterns as bad
– Flag them
– E.g., regular expressions

• Anomaly detection
– What does “normal” traffic look like?
– Flag abnormal traffic



Taxonomy
• Approach: Policy vs Anomaly
• Location: Network vs. Host
• Action: Detect vs. Prevent
• Semantics: IP vs TCP vs App
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Type Example
Host, Rule, IDS Tripwire

Host, Rule, IPS Personal Firewall

Net, Rule, IDS Snort
Net, Rule, IPS Network firewall

Host, Anomaly, IDS System call monitoring

Net, Anomaly, IDS Working set of connections
Net, Anomaly, IPS



Firewall Goals

Provide defense in depth by:
1. Blocking attacks against hosts and services
2. Control traffic between zones of trust
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Logical Viewpoint

18

Inside OutsideFirewall

For each message m, either:
• Allow with or without modification
• Block by dropping or sending rejection notice
• Queue

m

?



Placement
Host-based Firewall

Network-Based Firewall
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Host Firewall Outside

Firewall OutsideHost B

Host C

Host A

Features:
• Faithful to local 

configuration
• Travels with you

Features:
• Protect whole network
• Can make decisions on all 

of traffic (traffic-based 
anomaly)



Parameters

Types of Firewalls
1. Packet Filtering
2. Stateful Inspection
3. Application proxy

Policies
1. Default allow
2. Default deny
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Recall: Protocol Stack
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Application
(e.g.,	SSL)
Transport	

(e.g.,	TCP,	UDP)
Network	
(e.g.,	IP)
Link	Layer

(e.g.,	ethernet)

Physical

Application message - data

TCP data TCP data TCP data

TCP Header

dataTCPIP

dataTCPIPETH ETH

Link (Ethernet)
Header

Link (Ethernet)
Trailer

IP Header



Stateless Firewall
Filter by packet header fields

1. IP Field
(e.g., src, dst)

2. Protocol 
(e.g., TCP, UDP, ...)

3. Flags
(e.g., SYN, ACK)

Application

Transport

Network

Link	Layer

Firewall

Outside Inside

Example: only allow incoming DNS packets to 
nameserver A.A.A.A.

Allow UDP port 53 to A.A.A.A
Deny UDP port 53 allFail-safe good 

practice

e.g., ipchains in Linux 2.2
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Need to keep state
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Inside Outside

Listening

Store SNc, SNs

Wait

SNC¬randC
ANC¬0

Syn

SYN/ACK:
SNS¬randS
ANS¬SNC

Established

ACK: SN¬SNC+1
AN¬SNS

Example: TCP Handshake
Firewall

Desired Policy: 
Every SYN/ACK must 

have been preceded by 
a SYN 



Stateful Inspection Firewall

Added state 
(plus obligation to manage)

– Timeouts
– Size of table

State

Application

Transport

Network

Link	Layer

Outside Inside

e.g., iptables in Linux 2.4
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Stateful More Expressive
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Inside Outside

Listening

Store SNc, SNs

Wait

SNC¬randC

ANC¬0
Syn

SYN/ACK:
SNS¬randS

ANS¬SNC

Established

ACK: SN¬SNC+1
AN¬SNS

Example: TCP Handshake

Firewall

Record SNc in 
table

Verify ANs in 
table



Stateful Firewalls

Pros
• More expressive

Cons
• State-holding attack
• Mismatch between firewalls 

understanding of protocol 
and protected hosts
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Application Firewall
Check protocol 
messages directly

Clients connect to
firewall, firewall
connects to server

Examples:
–Web Proxies
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State

Application

Transport

Network

Link	Layer

Outside Inside



Dual Firewall
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Inside OutsideHubDMZ

Interior
Firewall

Exterior
Firewall



INTRUSION DETECTION AND 
PREVENTION SYSTEMS
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Logical Viewpoint
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Inside OutsideIDS/IPS

For each message m, either:
• Report m (IPS: drop or log)
• Allow m
• Queue

m

?



Overview
• Approach: Policy vs Anomaly
• Location: Network vs. Host
• Action: Detect vs. Prevent
• Semantics: “looks deeper”
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Policy-Based IDS

Use pre-determined rules to detect attacks

Examples: Regular expressions (snort),  
Cryptographic hash (tripwire, snort)
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Detect any fragments less than 256 bytes
alert tcp any any -> any any (minfrag: 256; msg: 

"Tiny fragments detected, possible hostile activity";)
Detect IMAP buffer overflow
alert tcp any any -> 192.168.1.0/24 143 (

content: "|90C8 C0FF FFFF|/bin/sh"; 
msg: "IMAP buffer overflow!”;)

Example Snort rules



OS Intrusion Detection via System Calls 
[wagner&dean 2001]
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Entry(f)Entry(g)

Exit(f)Exit(g)

open()

close()

exit()

getuid() geteuid()

f(int x) {

if(x){ getuid(); } else{ geteuid();}
x++;

}

g() {

fd = open("foo", O_RDONLY);
f(0); close(fd); f(1);

exit(0);

}

Execution inconsistent with automata indicates attack



Anomaly Detection
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Distribution	of	
“normal”	events

IDS

New Event

Attack

Safe



Example: Working Sets
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Alice

Days 1 to 300

reddit xkcd

slashdot

fark

working set
of hosts

Alice

Day 300

outside 
working set

reddit xkcd

slashdot

fark18487



Anomaly Detection

Pros
• Does not require pre-

determining policy 
(an “unknown” threat)

Cons
• Requires attacks are not 

strongly related to known 
traffic

• Learning distributions is 
hard
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ATTACKS AND EVASION
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State Holding Attack
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Firewall AttackerInside

Syn
Syn

Syn
...

1. Syn
Flood

2. Exhaust 
Resources

3. Sneak Packet

Assume stateful TCP policy



Fragmentation
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Octet 1 Octet 2 Octet 3 Octet 4

Ver IHL TOS Total Length

ID 0 D
F

M
F Frag ID

...

Data

Frag 1 Frag 2 Frag 3

IP Hdr DF=0 MF=1 ID=0 Frag 1

IP Hdr DF=0 MF=1 ID=n Frag 2

IP Hdr DF=1 MF=0 ID=2n Frag 3

say n 
bytes

DF : Don’t fragment 
(0 = May, 1 = Don’t)
MF: More fragments
(0 = Last, 1 = More)
Frag ID = Octet number



Reassembly
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Data

Frag 1 Frag 2 Frag 3

IP Hdr DF=0 MF=1 ID=0 Frag 1

IP Hdr DF=0 MF=1 ID=n Frag 2

IP Hdr DF=1 MF=0 ID=2n Frag 3

Frag 1 Frag 2 Frag 3
0 Byte n Byte 2n
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Octet 1 Octet 2 Octet 3 Octet 4

Source Port Destination Port

Sequence Number

....

... DF=1 MF=1 ID=0 ...
1234

(src port)
80

(dst port)
...Packet 1

Overlapping Fragment Attack

... DF=1 MF=1 ID=2 ... 22 ...Packet 2

1234 8022

Assume Firewall Policy:
þ Incoming Port 80 (HTTP)
ý Incoming Port 22 (SSH)

Bypass policyTCP Hdr
(Data!)



TTL attack example

Monitor

(10 hops)

(18 hops)
USER

seq= 6 ... 9

ttl=20

ttl=12

10 .. 13

nice

10 .. 13

ttl=20 root

ttl expires

USER nice

USER root

?

?

USER root

VictimAttacker

Figure 2: A TTL-based evasion attack on an intrusion detec-
tion system

quence numbers 6 through 9 in the TCP data stream. It is
18 hops to the victim and 10 hops to the monitor, so both
see this text and accept it. The attacker next transmits the
text “nice” covering the next consecutive span of the se-
quence space, 10 through 13, but with an initial TTL of
only 12, which suffices for the packet to travel past the mon-
itor, but not all the way to the victim. Hence, the moni-
tor sees this text but the victim does not. The attacker the
sends the text “root” with the same sequence numbers as
“nice”, but this time with enough TTL to reach the victim.
The victim will thus only see the text “USER” followed by
“root”, while the monitor will see two versions of the text
for sequence numbers 10 through 13, and will have to decide
which to assume was also received by the victim (if, indeed,
it even detects that the data stream includes an inconsistency,
which requires extra work on the monitor's part). While in
this case by inspecting the TTLs it may be able to determine
which of the two versions the victim will have seen, there are
many other ways (window checks, the MTU attack above,
checksums, acknowledgement sequence number checks) of
subtly affecting header fields such that the victim will re-
ject one or the other of the two versions. Fundamentally, the
monitor cannot confidently know which of the two versions
to accept.
A partial defense against this attack is that when we ob-

serve a retransmitted packet (one with data that wholly or
partially overlaps previously-seen data), we compare it with
any data it overlaps, and sound an alarm (or, for Bro, gener-
ate an event) if they disagree. A properly-functioning TCP
will always retransmit the same data as originally sent, so
any disagreement is either due to a broken TCP, undetected
data corruption (i.e., corruption the checksum fails to catch),
or an attack.
We have argued that the monitor must retain a record of

previously transmitted data, both in-sequence and out-of-
sequence. The question now arises as to how long the mon-
itor must keep this data around. If it keeps it for the lifetime
of the connection, then it may require prodigious amounts of

memory any time it happens upon a particularly large con-
nection; these are not infrequent [Pa94]. We instead would
like to discard data blocks as soon as possible, to reclaim
the associated memory. Clearly, we cannot safely discard
blocks above a sequencing hole, as we then lose the opportu-
nity to scan the text that crosses from the sequence hole into
the block. But we would like to determine when it is safe to
discard in-sequence data.
Here we can make use of our assumption that the attacker

controls only one of the connection endpoints. Suppose the
stream of interest flows from host to host . If the at-
tacker controls , then they are unable to manipulate the
data packets in a subterfuge attack, so we can safely discard
the data once it is in-sequence and we have had an opportu-
nity to analyze it. On the other hand, if they control , then,
from our assumption, any traffic we see from reflects the
correct functioning of its TCP (this assumes that we use anti-
spoofing filters so that the attacker cannot forge bogus traffic
purportedly coming from ). In particular, we can trust that
if we see an acknowledgement from for sequence number
, then indeed has received all data in sequence up to .
At this point, ' s TCP will deliver, or has already delivered,
this data to the application running on . In particular, ' s
TCP cannot accept any retransmitted data below sequence
, as it has already indicated it has no more interest in such
data. Therefore, when the monitor sees an acknowledgement
for , it can safely release any memory associated with data
up to sequence .
While this defenseworks for detecting this general class of

insertion attacks, it suffers from false positives, as discussed
in 7.3 below.
Finally, we note a general defense against certain types

of subterfuge attacks, which we term “bifurcating analysis.”
The idea is that when the monitor cannot determine how an
endpoint will interpret some network traffic (such as whether
it will accept USER nice or USER root), it forms mul-
tiple threads of analysis, examining each of the possibilities.
We note one example of doing so in 6.5 below in our dis-
cussion of analyzing Telnet and Rlogin traffic.

6 Application-specific processing
We finish our overview of Bro with a discussion of the addi-
tional processing it does for the six applications it currently
knows about: Finger, FTP, Portmapper, Ident, Telnet and
Rlogin. Admittedly these are just a small portion of the dif-
ferent Internet applications used in attacks, and Bro's effec-
tiveness will benefit greatly as more are added. Fortunately,
we have in general found that the system meets our goal
of extensibility ( 1), and adding new applications to Bro
is—other than the sometimes major headache of robustly
interpreting the application protocol itself—quite straight-
forward, a matter of deriving a C++ class to analyze each
connection's traffic, and devising a set of events correspond-
ing to significant elements of the application.
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From Paxson,  “Bro: A System for Detecting Network Intruders in Real-Time”, 1999



Fragmentation overlap attack

44

Internet

End-host sees:

NIDS sees:

Attacker’s data stream

NIDS

Host

A T T A I C K

same TCP seq #
or same IP frag offset

A T T A I C K

A T T A I C K



Potential Fix: traffic normalizer
Introduce “bump in the wire”: traffic normalizer to 
evade protocol ambiguities
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Internet

NIDS

HostNormalizer



Key problem

• IDS may not see what hosts see
– Different packet orders
– Different packets (TTL)
– Resolve ambiguities differently (fragments)



Algorithmic complexity attacks
• DoS attack on IDS enables other attacks to 

remain undetected
• Example: hash tables
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From: Denial of Service via Algorithmic Complexity Attacks



DETECTION THEORY

Base Rate, fallacies, and detection systems
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How hard is it to detect anomalies

• Given normal events, how accurate does a 
detector have to be?
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Let Ω be the set of all possible events. 
For example:
• Audit records produced on a host
• Network packets seen

Ω
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Ω

I

Set of intrusion 
events I

Intrusion Rate:

Pr[I] =
|I|
|⌦|

Example: IDS Received 1,000,000 packets. 
20 of them corresponded to an intrusion.
The intrusion rate Pr[I] is:
Pr[I] = 20/1,000,000  = .00002
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Ω

I A

Set of alerts A Pr[I] =
|I|
|⌦|

Alert Rate:

Pr[A] =
|A|
|⌦|

Defn: Sound
A ✓ I

Sound: Alerts are all intrusions
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Ω

I

A

Defn: Complete
I ✓ A

Complete: All intrusions generate alerts
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Ω

I A

Defn: False Positive
A \ ¬I

Defn: False Negative
I \ ¬A

Defn: True Positive
A \ I

Defn: True Negative
¬ A ∪ $
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Ω

I A

Defn: Detection rate

Pr[A|I] = Pr[A \ I]

Pr[I]

Think of the detection rate as the set of
intrusions raising an alert normalized by 
the set of all intrusions.



Example
• 1,000 people in the city

• 1 is a terrorist, and we have 
their pictures. Thus the base 
rate of terrorists is 1/1000

• Suppose we have a new 
terrorist facial recognition 
system that is 99% accurate.
– 99/100 times when someone 

is a terrorist there is an 
alarm

– For every 100 good people, 
the alarm only goes off once.

• An alarm went off. Is the 
suspect really a terrorist?
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City

(this times 10)



Example

Answer: The facial recognition 
system is 99% accurate.  That 
means there is only a 1% 
chance the guy is not the 
terrorist. 
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(this times 10)

City

Wro
ng!



Formalization
• 1 is terrorists, and we have 

their pictures. Thus the base 
rate of terrorists is 1/1000. 
P[T] = 0.001

• 99/100 times when someone 
is a terrorist there is an alarm.
P[A|T] = .99

• For every 100 good guys, the 
alarm only goes off once.
P[A | not T] = .01

• Want to know P[T|A]
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City

(this times 10)



• 1 is terrorists, and we have 
their pictures. Thus the base 
rate of terrorists is 1/1000. 
P[T] = 0.001

• 99/100 times when someone 
is a terrorist there is an alarm.
P[A|T] = .99

• For every 100 good guys, the 
alarm only goes off once.
P[A | not T] = .01

• Want to know P[T|A]
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City

(this times 10)

Intuition: Given 999 good guys, we 
have 999*.01 ≈  9-10 false alarms

False 
alarms
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Unknown

Unknown

Have: Pr[T ] = 0.001

Pr[A|T ] = .99,Pr[A|¬T ] = .01

Want to calculate: Pr[T |A] =
Pr[T \A]

Pr[A]



Calculating Probabilities
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• Probability of an alert and a terrorist is:
– Probability of an alert given a terrorist * probability of 

a terrorist
– Pr[A∩T] = Pr[A|T]*P[T]

• Probability of an alert is:
– Probability of an alert given a terrorist * probability of 

a terrorist
– Probability of an alert given not a terrorist * 

probability not a terrorist
– Pr[A] = Pr[T]* Pr[A|T] + Pr[¬T] * Pr[A|¬T]
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✓

✓

Have: Pr[T ] = 0.001

Pr[A|T ] = .99,Pr[A|¬T ] = .01

Want to calculate: Pr[T |A] =
Pr[T \A]

Pr[A]

= !" #|% ∗!" %
!" % ∗!" #|% '!" ¬% '!" #|¬%



Probability alert finds terrorist
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= !" #|% ∗!" %
!" % ∗!" #|% '!" ¬% '!" #|¬%

With Pr[A|T] = 0.999, still only 
50% of alerts are terrorists



Why is anomaly detection hard

For infrequent events: must be very accurate to 
avoid false positives

Using anomaly detection: 
- Easy to learn common and legal events
- Hard to learn rare but legal events

Bottom line: decide how bad are false positives?
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Conclusion
• Firewalls

– Ttypes: Packet filtering, Stateful, and Application
– Placement and DMZ

• IDS
– Anomaly vs. policy-based detection

• How can we exploit for evasion?
– E.g., fragmentation, TCP session reassembly, TTL

• How can we attack the defense infrastructure?
– E.g., overload, algorithmic complexity

• Detection theory
– Base rate fallacy
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