Rowhammer

CS642:
Computer Security

| can’t talk loudly
Please sit close to the front

Office hours today 11:15-12:15

Outline

* Spectre/meltdown review
* Rowhammer
e Hardware security summary

.
1GB <
\

36B <

Isolating kernel memory from userland

Kernel space

Stack

J1

ILf

Memory Mapping Region

T3

Heap

BSS segment

Data Segment

Text Segment (ELF)

* Userland code must not directly access kernel
memory.

* Kernel contains sensitive info:
* Info about other processes.

* Typically, all of physical memory is mapped into
the kernel address space.

* If userland code attempts to directly access
kernel memory, hardware triggers an
exception.

Virtual and physical memory

Virtual address space

0x00000000

0x00010000

0x10000000

Ox 7fffffff

Physical address space

0x00000000

Ox 0Offffff

[page belonging to process
[:, page not belonging to process

* The OS maps each process' virtual
address space to physical memory
via per-process page tables.

* Pages tables for all user processes
are managed by the kernel, i.e.,
kernel knows virtual to physical
mappings for all processes.

* Kernel itself is mapped into process
address space: Kernel's own virtual
to physical mappings are part of the
page table.

Metldown bug

* CPU will speculatively use page table entries with valid bit == 0 and
user/kernel bit set to kernel

e Result:

* inaccessible data loaded into cache
* but can’t be read

* Inaccessible data used in processor pipeline for subsequent instructions
e Can be used to decide what to speculatively load into cache

Meltdown: The Covert Channel Setup

Exception Handling/
Suppression

Transient Accessed

Secret @

I I
| |
| I
I I
| I
| I
I I
| |
I . I
: Instructions |
I I
| I
| I
I I
| I
| I
I I
| |

Microarchitectural

State Change

Transfer|(Covert Channel)
¥

State | Secret @

|
|
| Architectural Recovery | Recovered
|
|
|
|

4

Section 4.2

Figure 5: The Meltdown attack uses exception handling
or suppression, e.g., TSX, to run a series of transient
instructions. These transient instructions obtain a (per-
sistent) secret value and change the microarchitectural
state of the processor based on this secret value. This
forms the sending part of a microarchitectural covert
channel. The receiving side reads the microarchitectural
state, making it architectural and recovering the secret

Meltdown: The Covert Channel Setup

Exception Handling/
Suppression

Transient

Accessed

Instructions

Microarchitectural
State Change

————— — — — —] — o — e e e e e e e e o e e o - - —

Transfer|(Covert Channel)
\ 4

Architectural

Recovery

Secret @

State

Section 4.2

Y

Recovered
Secret @

A value of interest, stored in kernel
memory (typically inaccessible to
user processes)

Forked child process
(dies on exception, but
affects cache state)

|
|
I
|
|
|
|
|
|
I
|
e vorent proces
:
|
|

Meltdown: Transient Instruction Sequence

Exception Handling/
Suppression

Transient

Accessed

Instructions

Microarchitectural
State Change

————— — — — —] — o — e e e e e e e e o e e o - - —

Transfer|(Covert Channel)
\ 4

Architectural

Recovery

Y

Secret @

State

Section 4.2

Recovered
Secret @

; TrcT kernel address

;, bz = probe array

retry:

mov al, byte [rcx]

shl rax, Oxc

jz retry

mov rbx, qword [rbx + rax]

1 ; rcx = kernel address
2 ;, rbxz = probe array
3 retry:

The Meltdown Attack el vl

6 jz retry
7 mov rbx, qword [rbx + rax]

* Goal: Attacker wants to learn the value of the byte stored at a
particular kernel memory address (address in the rcx register).

e Step 1: Reading the secret (Line 4) mov al, byte [rcx]
* Loads the byte value stored at the address RCX into AL (LSB of RAX)

* This instruction should cause an exception if executed in userland.
Subsequent instructions should never be executed.

 BUT, due to OO0, subsequent instructions may already be executed
speculatively.

* Exceptions handled only when Line 4 is retired. By then, microarchitectural
state is already affected by subsequent OOO instruction execution.

1 ; rcx = kernel address
2 ;, rbxz = probe array
3 retry:

The Meltdown Attack el vl

6 jz retry
7 mov rbx, qword [rbx + rax]

* Goal: Attacker wants to learn the value of the byte stored at a
particular kernel memory address (address in the rcx register).

 Step 2: Transmitting the secret (Line 5) shl rax, Oxc
 Multiply the byte value X by the page size (4K).
* This will be used to index into a probe array (base address in RBX).

* A large spatial distance ensures that neighboring locations of the probe array
are not loaded into the cache (due to spatial locality optimizations).

* Probe array is of size 256 * 4K bytes, since we only have 256 possible byte
values.

1 ; rcx = kernel address
2 ;, rbxz = probe array
3 retry:

The Meltdown Attack el vl

6 jz retry
7 mov rbx, qword [rbx + rax]

* Goal: Attacker wants to learn the value of the byte stored at a
particular kernel memory address (address in the rcx register).

 Step 2: Transmitting the secret (Line 7) mov rbx, gword [rbx + rax]

* Read Probe_Array[X] (each entry is 4K bytes long).
* The value will be stored into the corresponding cache line

 Step 3: Receiving the secret (Parent process)
e Parent process probes the cache by iterating through Probe Array]].
* Only the read of Probe_Array[X] will be a hit in the cache.
» Attacker learns the value of X

1 ; rcx = kernel address
2 ;, rbxz = probe array
3 retry:

The Meltdown Attack el vl

6 jz retry
7 mov rbx, qword [rbx + rax]

e What is the role of line 3 and line 67?

* Race conditions!

* The attacker is racing against the hardware: Must get transient
instructions to execute and affect microarchitectural state before
the exception for line 4 is thrown.

* In some machines, exception is not handled, and process crashes,
but processor zeroes out registers before crashing the process.

* If zeroing out happens faster than the operation in line 5, attacker
will read the wrong value for X. So the code retries.

Meltdown attack application: Memory dumps

e Can iterate attack across a range of memory addresses to obtain a
complete memory dump of the kernel.

* Physical memory on modern machines mapped at an offset within
the kernel. So complete dump of physical memory is possible.

0 max

User > ' i Kernel

1 1
0 AT 47 -1

Physical memory

Figure 2: The physical memory 1s directly mapped in the
kernel at a certain offset. A physical address (blue) which
1s mapped accessible for the user space is also mapped in
the kernel space through the direct mapping.

Meltdown attack application: Memory dum

S

 Attack against Firefox56 running atop a Ubunto 16.10/Linux-4.8.0

machine on Intel Corei7-6700K

f94b7690: e5 e5 e5 eS5 e5 e5 e5 e5 e5 eS5 eS eS e5S eS5e5e5 |, |

£94b76a0: e5 e5 e5 e5 e5 e5 e5 e5 e5 eS eS eS eS eS5e5e5 |, |

£94b76b0: 70 52 b8 6b 96 7f XX XX XX XX XX XX XX XX XX XX |pR.K............ | Saved Logins

£94b76c0: 09 XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |...oovvennnnn... |

£94b76d0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |....uvennnnnn... |

£94b76e0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX 81 |...c.ouvveennnn... | Q
£94b76£0: 12 XX €0 81 19 XX e0 81 44 6f 6¢ 70 68 69 6e 31 |........ Dolphini |

£94b7700: 38 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 [8............... I Logins for the following sites are stored on your computer:

£94b7710: 70 52 b8 6b 96 7f XX XX XX XX XX XX XX XX XX XX |pR.K............ |

£94b7720: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |..ouveennrnnnnn. | Site a | Username Password Last Changed]
£94b7730: XX XX XX XX 4a XX XX XX XX XX XX XX XX XX XX XX |....J0........... |

£94b7740: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |.ovurrennennnnn. | < https://accounts.go... meltdown@gmail.com secretpwdO

£94b7750: XX XX XX XX XX XX XX XX XX XX €0 81 69 6e 73 74 |.....ouu.... inst . .

£94b7760: 61 5f 30 32 30 33 e5 €5 €5 5 e5 e5 e5 e5 e5 e5 :a_ozos : @ https://signin.ebay... meltdown@gmail.com Dolphin18 28. Dez. 2017
£94b7770: 70 52 18 7d 28 7f XX XX XX XX XX XX XX XX XX XX [pR.}(........... | a https://www.amaz.. meltdown@gmail.com hunter2 28. Dez. 2017
£94b7780: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |.vuurrennennnnn. |

£94b7790: XX XX XX XX 54 XX XX XX XX XX XX XX XX XX XX XX |....Te..uuenn... | K https://www.faceb.. meltdown@facebook... fb1234! 28. Dez. 2017
£94b77a0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |....oooveennnn... | . ,)

£94b77b0: XX XX XX XX XX XX XX XX XX XX XX XX 73 65 63 72 |..ovunenn... secr| @ hitps://www.instag.. meltdown@gmail.com insta-0203 28. Dez. 2017
£94b77c0: 65 74 70 77 64 30 e5 e5 e5 e5 e5 e5 e5 e5 e5 e5 |etpwd0.......... |

£94b77d0: 30 b4 18 7d 28 7f XX XX XX XX XX XX XX XX XX XX [0..}C..onnnn.... |

£94b77e0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |.euurrnonnennnnn. | -

£94b77£0: XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX |@nernennennnnnn. I Remove | Remove All Hide Passwords
£94b7800: e5 e5 e5 e5 e5 e5 e5 e5 e5 eS5 eS5 e5S5 e5 eS5e5e5 |, |

£94b7810: 68 74 74 70 73 3a 2f 2f 61 64 64 6f 6e 73 2e 63 |https://addons.c/ Close
£94b7820: 64 6e 2e 6d 6f 7a 69 6¢c 6¢c 61 2e 6e 65 74 2f 75 |dn.mozilla.net/ul

£94b7830: 73 65 72 2d 6d 65 64 69 61 2f 61 64 64 6f 6e 5f |ser-media/addon_|

£94b7840: 69 63 6f 6e 73 2f 33 35 34 2f 33 35 34 33 39 39 |icons/354/354399|

£94b7850: 2d 36 34 2e 70 6e 67 3f 6d 6f 64 69 66 69 65 64 |-64.png7modified| . . .
£94b7860: 3 31 34 35 32 32 34 34 38 31 35 XK XX XX XX XX |=1452244815. ... | Figure 6: Firefox 56 password manager showing the

stored passwords that are leaked using Meltdown in List-

Listing 4: Memory dump of Firefox 56 on Ubuntu 16.10 ing 4

on a Intel Core 17-6700K disclosing saved passwords (cf.

Meltdown attack status

* Applied successfully on several Intel processors on various OSes
(Linux-2.6.32 to 4.13.0), Windows 10, Docker, LXC, and OpenVZ.

* Proposed defense: KPTI (Kernel Page Table Isolation).

* Being integrated into various OSes.
* Long-term effectiveness is unclear.
e Also, still seems controversial:

Linus Torvalds declares Intel fix for Meltdown/Spectre
‘COMPLETE AND UTTER GARBAGFE’

Kernel page-table isolation

Kernel space

Kernel space

Kernel space

User space

User space

User space

Kernel mode

Kernel mode

User mode

Spectre

» Affects a wide variety of processors (Intel, ARM, AMD).
e Uses another form of speculative execution: branch prediction.

* Slightly harder to deploy than Meltdown, in that a “host” program is
required, which contains certain instruction sequences that can be

misused.
™

S

[»
JOUVUN

SPECTRE

Building block: Branch prediction

* In OO0, what happens when the speculative execution engine
reaches a branch?

* Hardware branch predictor predicts a likely outcome of the branch
(based on past history), and continues to speculate along the (likely)
taken branch.

TRUE branch
st 1d 1d cmp j=z

Instruction stream \
FALSE branch

Building block: Branch prediction

* In OO0, what happens when the speculative execution engine
reaches a branch?

* Hardware branch predictor predicts a likely outcome of the branch
(based on past history), and continues to speculate along the (likely)
taken branch.

Concrete Speculation

execution — TRUE branch
st 1d 1d cmp jz

Instruction stream \
FALSE branch

Building block: Branch prediction

* In OO0, what happens when the speculative execution engine
reaches a branch?

* Hardware branch predictor predicts a likely outcome of the branch
(based on past history), and continues to speculate along the (likely)

taken branch.
o&

_\
Concrete N\

Speculatlon CDQQC' , _
execution / TRUE branch «<—— Branch predictor predicts that

st 1d 1d cmp jz this is the likely branch that is taken

Instruction stream \
FALSE branch

Basic setup of Spectre attack

* In a “host” program (the victim of the attack), find an instruction
sequence with a branch.

* Preparation: Execute the program to train the branch predictor to go
in one direction (say, TRUE)

e Attack: Feed it a malicious input that would cause the branch to go
the other direction (i.e., FALSE), but rely on branch predictor to
execute the TRUE branch. Use the speculatively executed TRUE
branch to extract data from the victim program.

Consider a host program with this snippet

if (x < arrayl_size)
y = array2[arrayl[x] * 256];

arrayl is aunsigned byte array of size arrayl size
array? is of size 64KB (256*256)

Suppose the value of x is derived from user input to the program (and
can therefore be controlled by attacker).

In this program, there is some secret data S that you wish to access

Consider a host program with this snippet

if (x < arrayl_size)
y = array2[arrayl[x] * 256];

| arrayl size

|
DIS
|

arrayl

Observe: arrayl [DIS] obtains S

Attack preparation

if (x < arrayl_size)
y = array2[arrayl[x] * 256];

1. Execute the program long enough with a number of values of x, so
that the branch predictor is trained to take the true branch.

Arrange for cache to not contain array2 and arrayl size.

3. Arrange for cache to contain secret value S. How? E.g., S could be a
cryptographic key you want to learn. Arrange for a cryptographic

computation to happen that uses S.

Actual Spectre attack

if (x < arrayl_size)
y = array2[arrayl[x] * 256];

Now execute the program with x = DIS

1. x<arrayl_size will lead to a cache miss. Leads to a delay in fetching
arrayl_size. Processor speculates on branch.

2. Speculative code reads arrayl[DIS]. A hit in the cache (the value S)
3. Code then proceeds to read array2[S*256]. A miss in the cache.

However, arrayl_size may have arrived by then. Processor realizes
mistake in speculation. But too late...the speculative read
array2[S*256] already affects cache state

Actual Spectre attack

if (x < arrayl_size)
y = array2[arrayl[x] * 256];

However, arrayl_size may have arrived by then. Processor realizes
mistake in speculation. But too late...the speculative read
array2[S*256] already affects cache state.

If array2 is accessible to the attacker, just probe all its elements and use
cache-timing to figure out the value of S. (Many options possible here
to “transmit” the microarchitectural state to the attacker).

Notes about Spectre

* Not restricted to host programs that have such a convenient code
sequence built in.

e Can search for “gadgets” (short instruction sequences) that can be “weaved”
together to achieve desired effect (“Return-oriented Programming”, for those
students who took my E0-256 course)

* Not restricted to conditional branches. Attack also adapted to work
with indirect branches.

Rowhammer

* An unspeakably cool security vulnerability...

 DRAM (unless you pay for error correcting (ECC) memory) is actually
unreliable
e Can repeatedly read/write the same location ("hammer the row" and
eventually cause an error in some physically distinct memory location

* Can tell the OS "I want to map this same block of memory at multiple
addresses in my process..."

* Which creates additional page table entries

e Enter Rowhammer

* |t seems all vunerabilities get named now, but this one is cool enough to
deserve a name!

Dynamic Random Access Memory (DRAM)

Rank

O O O O O O
o O O O O O

DRAM Organization Inside a Bank

umn 6:

umn 5:

umn 4:
umn 3:
umn 2:

umn 1:

Memory
Cell

T

Row 1:

Row 2:

Row 3:

Row 4:

Row Buffer:

DRAM: Read Access

Highvoltage o © © 9 o ©
on access S § £ £ § S
3 3 3 3 3 3
5 3 3 35 35 5
BN W Ao
Row 1:
- Row2: -1-06-1-1-0 0
QO
Qg Row 3:
g O
& S Row 4.
3
Row Buffer: 410 -11-1-0 -0

DRAM unreliability

* Reading/rewriting bits leaks a bit of voltage to neighboring rows
* If done enough, can cause errors --- bit flips

Induced memory errors

Row 1:

Row2: -9 -0 9 1

Row3: -1-0-1-0 -1

Rowd: -9-1-0-0 0 0 Repeatedly

Row &- activating
Row 2 and 7

Row6: - 0-0-06-0-1 0
Row7: -1-0-1-0-1 60

Row Buffer: 1@ {1010

Triggering code

e Xand Y need to be on the
Y=X+8MB

bank but in

Read from Memory at
position X and store in EAX

Read from Memory at
position Y and store in EBX

Evict Xand Y from the
cache

Repeat procedure
(lots of times)

rOWS, general pattern:

WHY DO THE
ERRORS OCCUR?

DRAM CELLS ARE LEAKY

NORMAL CELL

CHARGE

Oms TIME 64ms

36

DRAM CELLS ARE I.EAKY

. AGGRESSOR

CHARGE

Oms TIME 64ms

37

ROOT CAUSE?

039597 coupLING
gOgOgOg e Electromagnetic

éOéOéOé *Tunneling

ACCELERATES CHARGE LOSS

38

AS DRAM SCALES ...

* CELLS BECOME SMALLER

Less tolerance to coupling effects

* CELLS BECOME PLACED CLOSER

Stronger coupling effects

COUPLING ERRORS MORE LIKELY

39

Increase strength: Double-Sided Rowhammer

[Seaborn+, Black Hat 2015]

DRAM Bank

Repeat N times:
mov AOgow o), €aX
MoV Al gew 2), €aX
clflush AO ey o)
clflush Al gy 9

Row 0 Aggressor Row1l

Row 1 Victim Row

Row 2 Aggressor Row2

Row-buffer

* Victim row lies between two aggressor rows
e All accesses have cross-talk, no need to flush row buffer

Rowhammer Native Client (NaCl) Exploit

* Google’s Native Client (NaCl) limits indirect jumps to
target a 32-Byte aligned address inside the sandbox

Rowhammert

reg2 Unmasked register
(unaligned jump)

NaCl Sample Code

Native Client attack

* Allocate lots of memory

* Fill with vulnerable instructions (load code)
* Apply Rowhammer

 Read memory to find desired bit flip

* Exploit flip

Rowhammer Kernel Exploit

* Spray the memory wit

n page table entries (PTEs)

* Launch rowhammer to corrupt a PTE

File
Copy N

File
Copy 1

File

Virtual Memory

PTE

PTE
PTE

File

Physical Memory

Rowhammer

read-write permission

Privilege Escalation with Rowhammer

Kernel Mode

X Shellcode
Data
RW Page Tables
RW
User Mode

Extensions

* Throwhammer: exploit over RDMA network
* Nethammer: exploit over normal network
e GLitch: exploit from GPU code

Solutions

* Test DRAM for vulnerable rows, black-list

* Increase refresh rate
* Hurts performance, takes power

* Add Error-correcting codes
e Better, but can still be broken

* Conceal physical addresses
e Turn off huge pages (hurts performance)

e Use vulnerable rows as cache, add checksum to detect errors

Summary of Hardware Vulnerabilities

* Optimizations change timing of instructions
* Timing leaks information

e Speculation changes microarchitectural (internal state)
* Timing can reveal these changes

 Reliability problems become security problems if they can be
intentionally triggered
* OS, program security mechanisms assume memory is correct

