
CS642:
Computer Security

University of Wisconsin CS 642

Rowhammer

I can’t talk loudly
Please sit close to the front

Office hours today 11:15-12:15

Outline

• Spectre/meltdown review
• Rowhammer
• Hardware security summary

Isolating kernel memory from userland
• Userland code must not directly access kernel

memory.
• Kernel contains sensitive info:
• Info about other processes.
• Typically, all of physical memory is mapped into

the kernel address space.

• If userland code attempts to directly access
kernel memory, hardware triggers an
exception.

Virtual and physical memory
• The OS maps each process' virtual

address space to physical memory
via per-process page tables.
• Pages tables for all user processes

are managed by the kernel, i.e.,
kernel knows virtual to physical
mappings for all processes.
• Kernel itself is mapped into process

address space: Kernel's own virtual
to physical mappings are part of the
page table.

Metldown bug

• CPU will speculatively use page table entries with valid bit == 0 and
user/kernel bit set to kernel

• Result:
• inaccessible data loaded into cache

• but can’t be read
• Inaccessible data used in processor pipeline for subsequent instructions

• Can be used to decide what to speculatively load into cache

Meltdown: The Covert Channel Setup

Meltdown: The Covert Channel Setup

Parent process

Forked child process
(dies on exception, but

affects cache state)

A value of interest, stored in kernel
memory (typically inaccessible to

user processes)

Meltdown: Transient Instruction Sequence

The Meltdown Attack

• Goal: Attacker wants to learn the value of the byte stored at a
particular kernel memory address (address in the rcx register).
• Step 1: Reading the secret (Line 4) mov al, byte [rcx]
• Loads the byte value stored at the address RCX into AL (LSB of RAX)
• This instruction should cause an exception if executed in userland.

Subsequent instructions should never be executed.
• BUT, due to OOO, subsequent instructions may already be executed

speculatively.
• Exceptions handled only when Line 4 is retired. By then, microarchitectural

state is already affected by subsequent OOO instruction execution.

The Meltdown Attack

• Goal: Attacker wants to learn the value of the byte stored at a
particular kernel memory address (address in the rcx register).
• Step 2: Transmitting the secret (Line 5) shl rax, 0xc
• Multiply the byte value X by the page size (4K).
• This will be used to index into a probe array (base address in RBX).
• A large spatial distance ensures that neighboring locations of the probe array

are not loaded into the cache (due to spatial locality optimizations).
• Probe array is of size 256 * 4K bytes, since we only have 256 possible byte

values.

The Meltdown Attack

• Goal: Attacker wants to learn the value of the byte stored at a
particular kernel memory address (address in the rcx register).
• Step 2: Transmitting the secret (Line 7) mov rbx, qword [rbx + rax]
• Read Probe_Array[X] (each entry is 4K bytes long).
• The value will be stored into the corresponding cache line

• Step 3: Receiving the secret (Parent process)
• Parent process probes the cache by iterating through Probe_Array[].
• Only the read of Probe_Array[X] will be a hit in the cache.
• Attacker learns the value of X

The Meltdown Attack

•What is the role of line 3 and line 6?
• Race conditions!
• The attacker is racing against the hardware: Must get transient

instructions to execute and affect microarchitectural state before
the exception for line 4 is thrown.
• In some machines, exception is not handled, and process crashes,

but processor zeroes out registers before crashing the process.
• If zeroing out happens faster than the operation in line 5, attacker

will read the wrong value for X. So the code retries.

Meltdown attack application: Memory dumps
• Can iterate attack across a range of memory addresses to obtain a

complete memory dump of the kernel.
• Physical memory on modern machines mapped at an offset within

the kernel. So complete dump of physical memory is possible.

Meltdown attack application: Memory dumps
• Attack against Firefox56 running atop a Ubunto 16.10/Linux-4.8.0

machine on Intel Corei7-6700K

Meltdown attack status
• Applied successfully on several Intel processors on various OSes

(Linux-2.6.32 to 4.13.0), Windows 10, Docker, LXC, and OpenVZ.
• Proposed defense: KPTI (Kernel Page Table Isolation).
• Being integrated into various OSes.
• Long-term effectiveness is unclear.
• Also, still seems controversial:

Spectre

• Affects a wide variety of processors (Intel, ARM, AMD).
• Uses another form of speculative execution: branch prediction.
• Slightly harder to deploy than Meltdown, in that a “host” program is

required, which contains certain instruction sequences that can be
misused.

Building block: Branch prediction

• In OOO, what happens when the speculative execution engine
reaches a branch?
• Hardware branch predictor predicts a likely outcome of the branch

(based on past history), and continues to speculate along the (likely)
taken branch.

Instruction stream

st ld ld cmp jz
TRUE branch

FALSE branch

Building block: Branch prediction

• In OOO, what happens when the speculative execution engine
reaches a branch?
• Hardware branch predictor predicts a likely outcome of the branch

(based on past history), and continues to speculate along the (likely)
taken branch.

Instruction stream

st ld ld cmp jz
TRUE branch

FALSE branch

Concrete
execution

Speculation

Building block: Branch prediction

• In OOO, what happens when the speculative execution engine
reaches a branch?
• Hardware branch predictor predicts a likely outcome of the branch

(based on past history), and continues to speculate along the (likely)
taken branch.

Instruction stream

st ld ld cmp jz
TRUE branch

FALSE branch

Concrete
execution

Speculation Speculation

Branch predictor predicts that
this is the likely branch that is taken

Basic setup of Spectre attack

• In a “host” program (the victim of the attack), find an instruction
sequence with a branch.
• Preparation: Execute the program to train the branch predictor to go

in one direction (say, TRUE)
• Attack: Feed it a malicious input that would cause the branch to go

the other direction (i.e., FALSE), but rely on branch predictor to
execute the TRUE branch. Use the speculatively executed TRUE
branch to extract data from the victim program.

Consider a host program with this snippet

array1 is a unsigned byte array of size array1_size
array2 is of size 64KB (256*256)
Suppose the value of x is derived from user input to the program (and
can therefore be controlled by attacker).
In this program, there is some secret data S that you wish to access

Consider a host program with this snippet

array1

array1_size

S

DIS

Observe: array1[DIS] obtains S

Attack preparation

1. Execute the program long enough with a number of values of x, so
that the branch predictor is trained to take the true branch.

2. Arrange for cache to not contain array2 and array1_size.
3. Arrange for cache to contain secret value S. How? E.g., S could be a

cryptographic key you want to learn. Arrange for a cryptographic
computation to happen that uses S.

Actual Spectre attack

Now execute the program with x = DIS
1. x < array1_size will lead to a cache miss. Leads to a delay in fetching

array1_size. Processor speculates on branch.
2. Speculative code reads array1[DIS]. A hit in the cache (the value S)
3. Code then proceeds to read array2[S*256]. A miss in the cache.
However, array1_size may have arrived by then. Processor realizes
mistake in speculation. But too late…the speculative read
array2[S*256] already affects cache state

Actual Spectre attack

However, array1_size may have arrived by then. Processor realizes
mistake in speculation. But too late…the speculative read
array2[S*256] already affects cache state.

If array2 is accessible to the attacker, just probe all its elements and use
cache-timing to figure out the value of S. (Many options possible here
to “transmit” the microarchitectural state to the attacker).

Notes about Spectre

• Not restricted to host programs that have such a convenient code
sequence built in.
• Can search for “gadgets” (short instruction sequences) that can be “weaved”

together to achieve desired effect (“Return-oriented Programming”, for those
students who took my E0-256 course)

• Not restricted to conditional branches. Attack also adapted to work
with indirect branches.

Rowhammer

• An unspeakably cool security vulnerability…
• DRAM (unless you pay for error correcting (ECC) memory) is actually

unreliable
• Can repeatedly read/write the same location ("hammer the row" and

eventually cause an error in some physically distinct memory location
• Can tell the OS "I want to map this same block of memory at multiple

addresses in my process…"
• Which creates additional page table entries

• Enter Rowhammer
• It seems all vunerabilities get named now, but this one is cool enough to

deserve a name!

27

Dynamic Random Access Memory (DRAM)

DRAM Organization Inside a Bank

Row Buffer:

Memory
CellRow 1:

Row 2:

Row 3:

Row 4:

Colum
n

1:

Colum
n

2:

Colum
n

3:

Colum
n

4:
Colum

n
5:

Colum
n

6:

DRAM: Read Access

1 0 1 1 0 0

Row Buffer: 1 0 1 1 0 0

Row 1:

Row 2:

Row 3:

Row 4:

Colum
n

1:

Colum
n

2:

Colum
n

3:

Colum
n

4:
Colum

n
5:

Colum
n

6:

High voltage
on access

Re
fr

es
h

(w
rit

e-
ba

ck
)

DRAM unreliability

• Reading/rewriting bits leaks a bit of voltage to neighboring rows
• If done enough, can cause errors --- bit flips

Induced memory errors

0 0 0 0 0 0

0 0 0 0 0 0
1 0 1 0 1 0

Row Buffer: 1 0 1 0 1 0

Victim Row 4:

Row 5:

Victim Row 6:

Agressor Row 7:

1 0 1 0 1 0
0 0 0 0 0 0

Row 1:

Victim Row 2:

Agressor Row 3:

Repeatedly
activating
Row 2 and 7

1

1

1

Triggering code

• X and Y need to be on the same bank but in different rows; general pattern:
Y = X + 8MB

<test-rows>:
mov eax, (X)
mov ebx, (Y)
clflush (X)
clflush (Y)
jmp test-rows

Read from Memory at
position X and store in EAX

Read from Memory at
position Y and store in EBX

Evict X and Y from the
cache

Repeat procedure
(lots of times)

35

WHY DO THE
ERRORS OCCUR?

36

DRAM CELLS ARE LEAKY

CH
AR

GE ‘1’

‘0’

64ms0ms

RE
FR

ES
HNORMAL CELL

TIME

37

DRAM CELLS ARE LEAKY

CH
AR

GE ‘1’

‘0’

64ms0ms

RE
FR

ES
H

VICTIM CELL

AGGRESSOR

TIME

38

COUPLING
•Electromagnetic
•Tunneling

ROOT CAUSE?

⇝ ⇝⇝⇝⇝ ⇝⇝⇝

ACCELERATES CHARGE LOSS

AS DRAM SCALES …

• CELLS BECOME SMALLER
Less tolerance to coupling effects

• CELLS BECOME PLACED CLOSER
Stronger coupling effects

COUPLING ERRORS MORE LIKELY
39

Repeat N times:
mov A0(Row 0), eax
mov A1(Row 2), eax
clflush A0(Row 0)
clflush A1(Row 2)

Increase strength: Double-Sided Rowhammer

40

…

Row 0

Row 1

…

DRAM Bank

Aggressor Row1

Victim Row

Row 2

Row-buffer

[Seaborn+, Black Hat 2015]

Aggressor Row2

• Victim row lies between two aggressor rows
• All accesses have cross-talk, no need to flush row buffer

Rowhammer Native Client (NaCl) Exploit
• Google‘s Native Client (NaCl) limits indirect jumps to

target a 32-Byte aligned address inside the sandbox

mask (reg1)
add reg1,sand_base
jmp reg1

NaCl Sample Code

Rowhammer
mask (reg1)
add reg1,sand_base
jmp reg2 Unmasked register

(unaligned jump)

Native Client attack

• Allocate lots of memory
• Fill with vulnerable instructions (load code)
• Apply Rowhammer
• Read memory to find desired bit flip
• Exploit flip

Rowhammer Kernel Exploit
• Spray the memory with page table entries (PTEs)
• Launch rowhammer to corrupt a PTE

File

File
Copy 1

File
Copy N…

File

PTE
PTE

PTE…

Rowhammer

Virtual Memory Physical Memory

read-write permission

User Mode

Privilege Escalation with Rowhammer
Kernel Mode

Code
System Call CodeRX

...RX

Data
Page TablesRW

…RW
Manipulate the
page table

RWX

Page Tables

Shellcode
Overwrite existing
function (e.g.,
system call) with
shellcode

Trigger system call
to execute the
injected shellcode

Extensions

• Throwhammer: exploit over RDMA network
• Nethammer: exploit over normal network
• GLitch: exploit from GPU code
• …

Solutions

• Test DRAM for vulnerable rows, black-list
• Increase refresh rate
• Hurts performance, takes power

• Add Error-correcting codes
• Better, but can still be broken

• Conceal physical addresses
• Turn off huge pages (hurts performance)

• Use vulnerable rows as cache, add checksum to detect errors

46

Summary of Hardware Vulnerabilities

• Optimizations change timing of instructions
• Timing leaks information

• Speculation changes microarchitectural (internal state)
• Timing can reveal these changes

• Reliability problems become security problems if they can be
intentionally triggered
• OS, program security mechanisms assume memory is correct

