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Isolating kernel memory from userland
• Userland code must not directly access kernel 

memory.
• Kernel contains sensitive info:
• Info about other processes.
• Typically, all of physical memory is mapped into 

the kernel address space.

• If userland code attempts to directly access 
kernel memory, hardware triggers an 
exception.



Virtual and physical memory
• The OS maps each process' virtual 

address space to physical memory 
via per-process page tables.
• Pages tables for all user processes 

are managed by the kernel, i.e., 
kernel knows virtual to physical 
mappings for all processes.
• Kernel itself is mapped into process 

address space: Kernel's own virtual 
to physical mappings are part of the 
page table.



Metldown bug

• CPU will speculatively use page table entries with valid bit == 0 and 
user/kernel bit set to kernel

• Result: 
• inaccessible data loaded into cache 

• but can’t be read
• Inaccessible data used in processor pipeline for subsequent instructions

• Can be used to decide what to speculatively load into cache



Meltdown: The Covert Channel Setup



Meltdown: The Covert Channel Setup

Parent process

Forked child process
(dies on exception, but 

affects cache state)

A value of interest, stored in kernel 
memory (typically inaccessible to 

user processes)



Meltdown: Transient Instruction Sequence



The Meltdown Attack

• Goal: Attacker wants to learn the value of the byte stored at a 
particular kernel memory address (address in the rcx register).
• Step 1: Reading the secret (Line 4) mov al, byte [rcx]
• Loads the byte value stored at the address RCX into AL (LSB of RAX)
• This instruction should cause an exception if executed in userland. 

Subsequent instructions should never be executed.
• BUT, due to OOO, subsequent instructions may already be executed 

speculatively.
• Exceptions handled only when Line 4 is retired. By then, microarchitectural 

state is already affected by subsequent OOO instruction execution.



The Meltdown Attack

• Goal: Attacker wants to learn the value of the byte stored at a 
particular kernel memory address (address in the rcx register).
• Step 2: Transmitting the secret (Line 5) shl rax, 0xc
• Multiply the byte value X by the page size (4K).
• This will be used to index into a probe array (base address in RBX).
• A large spatial distance ensures that neighboring locations of the probe array 

are not loaded into the cache (due to spatial locality optimizations).
• Probe array is of size 256 * 4K bytes, since we only have 256 possible byte 

values.



The Meltdown Attack

• Goal: Attacker wants to learn the value of the byte stored at a 
particular kernel memory address (address in the rcx register).
• Step 2: Transmitting the secret (Line 7) mov rbx, qword [rbx + rax]
• Read Probe_Array[X] (each entry is 4K bytes long).
• The value will be stored into the corresponding cache line

• Step 3: Receiving the secret (Parent process)
• Parent process probes the cache by iterating through Probe_Array[]. 
• Only the read of Probe_Array[X] will be a hit in the cache.
• Attacker learns the value of X



The Meltdown Attack

•What is the role of line 3 and line 6?
• Race conditions!
• The attacker is racing against the hardware: Must get transient 

instructions to execute and affect microarchitectural state before 
the exception for line 4 is thrown.
• In some machines, exception is not handled, and process crashes, 

but processor zeroes out registers before crashing the process.
• If zeroing out happens faster than the operation in line 5, attacker 

will read the wrong value for X. So the code retries.



Meltdown attack application: Memory dumps
• Can iterate attack across a range of memory addresses to obtain a 

complete memory dump of the kernel.
• Physical memory on modern machines mapped at an offset within 

the kernel. So complete dump of physical memory is possible.



Meltdown attack application: Memory dumps
• Attack against Firefox56 running atop a Ubunto 16.10/Linux-4.8.0 

machine on Intel Corei7-6700K



Meltdown attack status
• Applied successfully on several Intel processors on various OSes 

(Linux-2.6.32 to 4.13.0), Windows 10, Docker, LXC, and OpenVZ.
• Proposed defense: KPTI (Kernel Page Table Isolation).
• Being integrated into various OSes.
• Long-term effectiveness is unclear.
• Also, still seems controversial:



Spectre

• Affects a wide variety of processors (Intel, ARM, AMD).
• Uses another form of speculative execution: branch prediction.
• Slightly harder to deploy than Meltdown, in that a “host” program is 

required, which contains certain instruction sequences that can be 
misused.



Building block: Branch prediction

• In OOO, what happens when the speculative execution engine 
reaches a branch?
• Hardware branch predictor predicts a likely outcome of the branch 

(based on past history), and continues to speculate along the (likely) 
taken branch.

Instruction stream

st ld ld cmp jz
TRUE branch

FALSE branch
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Building block: Branch prediction

• In OOO, what happens when the speculative execution engine 
reaches a branch?
• Hardware branch predictor predicts a likely outcome of the branch 

(based on past history), and continues to speculate along the (likely) 
taken branch.

Instruction stream

st ld ld cmp jz
TRUE branch

FALSE branch

Concrete
execution

Speculation Speculation

Branch predictor predicts that 
this is the likely branch that is taken



Basic setup of Spectre attack

• In a “host” program (the victim of the attack), find an instruction 
sequence with a branch.
• Preparation: Execute the program to train the branch predictor to go 

in one direction (say, TRUE)
• Attack: Feed it a malicious input that would cause the branch to go 

the other direction (i.e., FALSE), but rely on branch predictor to 
execute the TRUE branch. Use the speculatively executed TRUE 
branch to extract data from the victim program.



Consider a host program with this snippet

array1 is a unsigned byte array of size array1_size
array2 is of size 64KB (256*256)
Suppose the value of x is derived from user input to the program (and 
can therefore be controlled by attacker).
In this program, there is some secret data S that you wish to access



Consider a host program with this snippet

array1

array1_size

S

DIS

Observe: array1[DIS] obtains S



Attack preparation

1. Execute the program long enough with a number of values of x, so 
that the branch predictor is trained to take the true branch.

2. Arrange for cache to not contain array2 and array1_size.
3. Arrange for cache to contain secret value S. How? E.g., S could be a 

cryptographic key you want to learn. Arrange for a cryptographic 
computation to happen that uses S.



Actual Spectre attack

Now execute the program with x = DIS
1. x < array1_size will lead to a cache miss. Leads to a delay in fetching 

array1_size. Processor speculates on branch.
2. Speculative code reads array1[DIS]. A hit in the cache (the value S)
3. Code then proceeds to read array2[S*256]. A miss in the cache.
However, array1_size may have arrived by then. Processor realizes 
mistake in speculation. But too late…the speculative read 
array2[S*256] already affects cache state



Actual Spectre attack

However, array1_size may have arrived by then. Processor realizes 
mistake in speculation. But too late…the speculative read 
array2[S*256] already affects cache state.

If array2 is accessible to the attacker, just probe all its elements and use 
cache-timing to figure out the value of S. (Many options possible here 
to “transmit” the microarchitectural state to the attacker).



Notes about Spectre

• Not restricted to host programs that have such a convenient code 
sequence built in.
• Can search for “gadgets” (short instruction sequences) that can be “weaved” 

together to achieve desired effect (“Return-oriented Programming”, for those 
students who took my E0-256 course)

• Not restricted to conditional branches. Attack also adapted to work 
with indirect branches.



Rowhammer

• An unspeakably cool security vulnerability…
• DRAM (unless you pay for error correcting (ECC) memory) is actually 

unreliable
• Can repeatedly read/write the same location ("hammer the row" and 

eventually cause an error in some physically distinct memory location
• Can tell the OS "I want to map this same block of memory at multiple 

addresses in my process…"
• Which creates additional page table entries

• Enter Rowhammer
• It seems all vunerabilities get named now, but this one is cool enough to 

deserve a name!
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Dynamic Random Access Memory (DRAM)



DRAM Organization Inside a Bank 
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DRAM unreliability

• Reading/rewriting bits leaks a bit of voltage to neighboring rows
• If done enough, can cause errors --- bit flips



Induced memory errors
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Triggering code

• X and Y need to be on the same bank but in different rows; general pattern: 
Y = X + 8MB

<test-rows>:
mov eax, (X)
mov ebx, (Y)
clflush (X)
clflush (Y)
jmp test-rows

Read from Memory at 
position X and store in EAX

Read from Memory at 
position Y and store in EBX

Evict  X and Y from the 
cache

Repeat procedure 
(lots of times)
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WHY DO THE
ERRORS OCCUR?
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DRAM CELLS ARE LEAKY
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DRAM CELLS ARE LEAKY
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COUPLING
•Electromagnetic
•Tunneling

ROOT CAUSE?

⇝ ⇝⇝⇝⇝ ⇝⇝⇝

ACCELERATES CHARGE LOSS 



AS DRAM SCALES …

• CELLS BECOME SMALLER 
Less tolerance to coupling effects

• CELLS BECOME PLACED CLOSER
Stronger coupling effects

COUPLING ERRORS MORE LIKELY
39



Repeat N times:
mov A0(Row 0), eax
mov A1(Row 2), eax
clflush A0(Row 0)
clflush A1(Row 2)

Increase strength: Double-Sided Rowhammer 
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…

Row 0

Row 1

…

DRAM Bank

Aggressor Row1 

Victim Row 

Row 2

Row-buffer

[Seaborn+,  Black Hat 2015]

Aggressor Row2 

• Victim row lies between two aggressor rows
• All accesses have cross-talk, no need to flush row buffer



Rowhammer Native Client (NaCl) Exploit
• Google‘s Native Client (NaCl) limits indirect jumps to 

target a 32-Byte aligned address inside the sandbox

mask (reg1)
add reg1,sand_base
jmp reg1

NaCl Sample Code

Rowhammer
mask (reg1)
add reg1,sand_base
jmp reg2 Unmasked register 

(unaligned jump)



Native Client attack

• Allocate lots of memory
• Fill with vulnerable instructions (load code)
• Apply Rowhammer
• Read memory to find desired bit flip
• Exploit flip



Rowhammer Kernel Exploit
• Spray the memory with page table entries (PTEs)
• Launch rowhammer to corrupt a PTE

File

File
Copy 1

File
Copy N…

File

PTE
PTE

PTE…

Rowhammer

Virtual Memory Physical Memory

read-write permission



User Mode

Privilege Escalation with Rowhammer
Kernel Mode

Code
System Call CodeRX

...RX

Data
Page TablesRW

…RW
Manipulate the 
page table

RWX

Page Tables

Shellcode
Overwrite existing 
function (e.g., 
system call) with 
shellcode

Trigger system call 
to execute the 
injected shellcode



Extensions

• Throwhammer: exploit over RDMA network
• Nethammer: exploit over normal network
• GLitch: exploit from GPU code
• …



Solutions

• Test DRAM for vulnerable rows, black-list 
• Increase refresh rate
• Hurts performance, takes power

• Add Error-correcting codes
• Better, but can still be broken

• Conceal physical addresses
• Turn off huge pages (hurts performance)

• Use vulnerable rows as cache, add checksum to detect errors
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Summary of Hardware Vulnerabilities

• Optimizations change timing of instructions
• Timing leaks information

• Speculation changes microarchitectural (internal state)
• Timing can reveal these changes

• Reliability problems become security problems if they can be 
intentionally triggered
• OS, program security mechanisms assume memory is correct


