
CS642:
Computer Security

University of Wisconsin CS 642

Security economics

Topics

• What are the economic incentives for security
• What are the disincentives?
• How can economics help security?
• Hope for the future

Part 4 ¾ Software
3

Penetrate and Patch

• Usual approach to software development
– Develop product as quickly as possible

– Release it without adequate testing

– Patch the code as flaws are discovered

• In security, this is “penetrate and patch”
– A bad approach to software development

– An even worse approach to secure software!

Part 4 ¾ Software
4

Why Penetrate and Patch?

• First to market advantage
– First to market likely to become market leader

– Market leader has huge advantage in software

– Users find it safer to “follow the leader”

– Boss won’t complain if your system has a flaw, as long
as everybody else has same flaw…

– User can ask more people for support, etc.

• Sometimes called “network economics”

Part 4 ¾ Software
5

Why Penetrate and Patch?

• Secure software development is hard
– Costly and time consuming development
– Costly and time consuming testing
– Cheaper to let customers do the work!

• No serious economic disincentive
– Even if software flaw causes major losses, the software

vendor is not liable
– Is any other product sold this way?
– Would it matter if vendors were legally liable?

Part 4 ¾ Software
6

Penetrate and Patch Fallacy

• Fallacy: If you keep patching software, eventually it
will be secure

• Why is this a fallacy?

• Empirical evidence to the contrary

• Patches often add new flaws

• Software is a moving target: new versions, features,
changing environment, new uses,…

Part 4 ¾ Software
7

Open vs Closed Source

• Open source software
– The source code is available to user
– For example, Linux

• Closed source
– The source code is not available to user
– For example, Windows

• What are the security implications?

Part 4 ¾ Software
8

Open Source Security
• Claimed advantages of open source is

– More eyeballs: more people looking at the code should
imply fewer flaws

– A variant on Kerchoffs Principle
• Is this valid?

– How many “eyeballs” looking for security flaws?
– How many “eyeballs” focused on boring parts?
– How many “eyeballs” belong to security experts?
– Attackers can also look for flaws!
– Evil coder might be able to insert a flaw

Part 4 ¾ Software
9

Open Source Security

• Open source example: wu-ftp
– About 8,000 lines of code
– A security-critical application
– Was deployed and widely used
– After 10 years, serious security flaws discovered!

• More generally, open source software has done
little to reduce security flaws

• Why?
– Open source follows penetrate and patch model!

Part 4 ¾ Software
10

Closed Source Security

• Claimed advantage of closed source
– Security flaws not as visible to attacker
– This is a form of “security by obscurity”

• Is this valid?
– Many exploits do not require source code
– Possible to analyze closed source code…
– …though it is a lot of work!
– Is “security by obscurity” real security?

Part 4 ¾ Software
11

Open vs Closed Source

• Advocates of open source often cite the
Microsoft fallacy which states

1. Microsoft makes bad software
2. Microsoft software is closed source
3. Therefore all closed source software is bad

• Why is this a fallacy?
– Not logically correct
– More relevant is the fact that Microsoft follows the

penetrate and patch model

Part 4 ¾ Software
12

Open vs Closed Source

• No obvious security advantage to either
open or closed source

• More significant than open vs closed source
is software development practices

• Both open and closed source follow the
“penetrate and patch” model

Part 4 ¾ Software
13

Open vs Closed Source
• If there is no security difference, why is Microsoft

software attacked so often?
– Microsoft is a big target!
– Attacker wants most “bang for the buck”

• Few exploits against Mac OS X
– Not because OS X is inherently more secure
– An OS X attack would do less damage
– Would bring less “glory” to attacker

• Next, we consider the theoretical differences
– See this paper

http://www.cl.cam.ac.uk/ftp/users/rja14/toulouse.pdf

Part 4 ¾ Software
14

Security and Testing

• The fundamental problem
– Good guys must find (almost) all flaws
– Bad guy only needs 1 (exploitable) flaw

• Software reliability far more difficult in
security than elsewhere

• How much more difficult?
– See the next slide…

Part 4 ¾ Software
15

Security Testing: Do the Math
• Suppose 106 security flaws in some software

– Say, MacOS X

• Suppose each bug has MTBF of 109 hours

• Expect to find 1 bug for every 103 hours testing

• Good guys spend 107 hours testing: find 104 bugs
– Good guys have found 1% of all the bugs

• Trudy spends 103 hours of testing: finds 1 bug

• Chance good guys found Trudy’s bug is only 1% !!!

16

Cost vs. benefit
• Rational attackers compare the cost of an attack with

the gains from it
– Attackers look for the weakest link; thus, little is gained by

strengthening the already strong bits
• Rational defenders compare the risk of an attack with

the cost of implementing defenses
– Lampson: “Perfect security is the enemy of good security”

• But human behavior is not always rational:
– Attackers follow each other and flock all to the same path
– Defenders buy a peace of mind; avoid personal liability by

doing what everyone else does
→ Many events are explained better by group behavior than

rational choice

System Purchasing Economics
• What are incentives for person recommending

a software purchase?
– Get the best product

Or
– Don’t get fired?

• Buying from big companies (IBM, Microsoft)
easy to defend even if less secure

Who pays for security?

• US banks:
– System assumes when customer complains they

are correct unless bank proves fraud

• British banks
– System assumes banks are secure: when customer

complains they can be accused of fraud

Which leads to better security, and by whom?

Security-based Costs

• US Electronic payments (EMV)
– Cost of a transaction varies based on security

practices
• Did you check a PIN
• Did you get a signature

– Liability for fraud lies partially on seller
• Encourage them to have better practices

Botnets

• Mirai botnet: millions of IoT security cameras
compromised to form a botnet
– Launches massive denial of service attacks.

Who pays to make security cameras more
secure?

Why pays cost of a botnet?

Secure Software Evaluation

• US orange book: criteria for military-grade
security
– US government pays for evaluation of software
– Cheaper for companies

• European Common Criteria: criteria for military-
grade software
– Vendor hires auditor to evaluate software
– Cheaper for government

Which one has better aligned incentives?

Principle: assign security to the correct
entity

• Make the entity that is charged or benefits
from security do the evaluation
– Hire your own evaluators

• Charge the entity that is best able to do
something about it
– Banks can do a lot more for security than

customers
– Device vendors can do more than users

Software Liability

• Without an agreement, company liable if:
– The software vendor owed the user a duty to

provide functioning software;
– The software did not live up to that standard;
– The user suffered harm;
– The software caused that harm.

• Should software vendors be liable for harm
from (security) bugs?

Software liability (2)

• License agreements:

Software Liability (3)

• Open source software
– Why should be liable for security bugs in Linux?

Customer information

• How do you buy secure software?

• How do you buy a used car?
– Suppose 20% of used cars are lemons, but you

can’t tell which
– How much would you pay for car?

Information about security

• What information is available to a purchasing
decision?
– Price - published
– Features - observable
– Performance - measurable
– Reputation - available

• What is not available?
– Security
– Reliability

Solutions

• How do we deal with cars/drivers that can hurt
other people?
– Require insurance
– Worse drivers pay more -> incentive to be a better

driver or stop driving
• How insurance helps:

– Charge people if their computer is involved in an
attack

– Sell them insurance to cover the cost
– Better security practices -> cheaper insurance

Hope from Academia

• SeL4
– Microkernel: A concept is tolerated inside the

microkernel only if moving it outside the kernel,
i.e., permitting competing implementations,
would prevent the implementation of the system's
required functionality.

Secure L4 (seL4) – Design Goals
• Create a formal model of a microkernel

• Implement the microkernel

• Prove that it always behaves according to the specification

Assumptions

• Hardware works correctly

• Compiler produces machine code that fits
their formalization

• Some unchecked assembly code is correct

• Boot loader is correct

Reminder

• Not all equivalent programs are equally
amenable to verification

void swap(ptr A, ptr B)
{

ptr C := A;
A := B;
B := C;

}

void swap(ptr A, ptr B)
{

A := A xor B;
B := A xor B;
A := A xor B;

}

vs.

How to design kernel + spec?

• Bottom-Up-Approach: Concentrate on low-
level details to maximize performance

• Problem: Produces complex design, hard to
verify

How to design kernel + spec?

• Top-Down-Approach: Create formal model of
kernel and generate code from it

• Problem: High level of abstraction from
hardware

How to design kernel + spec?

• Compromise: build prototype in high-level language (Haskell)

• Generate “executable specification” from prototype

• Re-implement executable specification in C

• Prove refinements:
– C ⇔ executable specification
– Executable specification ⇔ Abstract specification (more high-level)

Sidebar: Invariants

A property that is true of every state*.
* at least at public method boundaries.

For example, inserting a node into a linked list may cause
the list to become temporarily disconnected.

Invariants may need to be verified for every part of the
system, not just the parts of the system that obviously
manipulate the structure in question.

Example: desired file synchronizer
properties?
The synchronizer doesn't eat my files.
• partial file updates work correctly
• conflicts are handled in some sane manner
• massive deletes are not propagated without warning

I always have the latest version of my files.
• what about network latency?

o prioritize file transfers

Synchronization is idempotent.
• f(f(x)) = f(x)
• e.g., set union is idempotent

What properties do we expect from a
kernel?
• Every system call terminates.
• No exceptions thrown.
• No arithmetic problems (e.g., overflow, divide by zero)
• No null pointer de-references.
• No ill-typed pointer de-references.
• No memory leaks.
• No buffer overflows.
• No unchecked user arguments.
• Code injection attacks are impossible.
• Well-formed data structures.
• Correct book-keeping.
• No two objects overlap in memory
• etc.

Iterative Co-design of Kernel & Proof

Kernel Team
1. Initial prototype (Haskell)
• no interrupts
• single address space
• generic linear page table

2. Complete prototype
• add missing functionality

3. Implementation

Proof Team
1. Infrastructure

2. Abstract Spec
• prototype vs spec

3. Spec vs Implementation

How to prove an OS?

Haskell executable design specification

C Implementation

The implementation in C is much larger.

Abstract Spec
(Isabelle/HOL)

Executable Spec
(Haskell)

A smidgen of C from the scheduler

Design for verification

Important Design Decisions

1. Global variables & Side Effects
2. Kernel Memory Management
3. Concurrency & Non-Determinism
4. I/O

Global Variables & Side Effects

Use sparingly. Expensive to verify because they require
invariants, which need to be checked against all code.
Keep them modular and under control.

Haskell prototype helped with this, since side-effects in
Haskell have to be made explicit.

Kernel Memory Management

Kernel only has mechanism.

Push policy to userspace.
• => don't need to verify policy

Invariants about the state of memory book-keeping data
structures mean that certain checks can be done quickly at
runtime. (This would not be safe without the proof.)

Concurrency & Non-Determinism

Short system calls.

Disable interrupts during system calls.

Therefore, no concurrency in the kernel.

Easy.

I/O

Hardware devices generate interrupts.

These are converted to IPC messages for the userspace
device drivers. Hence, much complexity removed from
kernel.

Usefulness / cost

Cost of Verification

Abstract
Specification

1%
Haskell Prototype

9%
Executable

Specification…
C implementation

1%

Verification
Frameworks

40%

seL4-…

Amount of Work

Abstract Specification Haskell Prototype Executable Specification

C implementation Verification Frameworks seL4-Proofs

Source of Data: seL4, Klein et al.

Takeaway

• Functional verification of microkernels is possible
• Performance of verified kernels can be OK

• However:
– Verification is a huge effort
– Still needs to assume compiler correctness (è huge

trusted base)

• Is proving functional correctness worth the
effort?

