
CS642:
Computer Security

University of Wisconsin CS 642

Blockchain

Outline

• Vision of digital cash
• Centralized models
• Decentralized models

• Block chain / distributed ledger
• Bitcoin details
• Ethereum details

A Brave New World - The Vision of David Chaum

A Brave New World - The Vision of David Chaum
Basically ...
● Electronic payment systems suffer from loss

of privacy and cumbersome trust on single
entities.

● Privacy protection, however, encounters
issues of security and safety of data.

Digital Payments

• Credit card approach
• Vendors establish account with payment processor (e.g., PayPal)
• User provides credit card number to vendor
• During transaction, vendor contacts PayPal, which contacts Visa, which

contacts a bank to authorize payment
• Later, sends settlement request to transfer money to seller account

• Properties:
• Expensive to scale: must handle billions of payments
• Supports small number of credit cards
• Identifies buyer (CC#), seller (account #)

Digital cash

• Goal: untraceable money transfers
• Idea: bank issues digital coins

• Certificates signed by bank with a
value

• User can transfer them as payment to
a merchant

• Merchant can redeem them at a bank
for money

Goofy can create new coins

CreateCoin [uniqueCoinID]

signed by pkGoofy

New coins belong to me.

A coin’s owner can spend it.

CreateCoin [uniqueCoinID]

signed by pkGoofy

Pay to pkAlice : H()

signed by pkGoofy

Alice owns it now.

The recipient can pass on the coin again.

CreateCoin [uniqueCoinID]

signed by pkGoofy

Pay to pkAlice : H()

signed by pkGoofy

Pay to pkBob : H()

signed by pkAlice Bob owns it now.

CreateCoin [uniqueCoinID]

signed by pkGoofy

Pay to pkAlice : H()

signed by pkGoofy

Pay to pkBob : H()

signed by pkAlice

Pay to pkChuck : H()

signed by pkAlice

double-spending attack

Nick Szabo [1998]

http://unenumerated.blogspot.com/2005/12/bit-gold.html

Satoshi Nakamoto and the Anon Post [2008]

Satoshi Nakamoto and the Anon Post [2008]

Satoshi Nakamoto and the Anon Post [2008]

Goals
An electronic payment system:
● Guarantees safety of transactions, protects against double

spends, gives full freedom to owners.
● Yet no central trusted authority, no reliance on quorum since

identities are not known.
● Prevent compromise through proof of work – doing lots of

computations

Bitcoin
N1

N2

N3

N4

N6

N5

TX1 = [Alice →
Bob]

TX2 = [Alice →
Carol]

Bitcoin
N1

N2

N3

N4

N6

N5

Bitcoin
N1

N2

N3

N4

N6

N5

TX1

TX2

TX1

TX2

TX2

TX1

Bitcoin

New

Good

Evil
Here’s what I
know

Here’s what I
know

?

Bitcoin
N1

N2

N3

N4

N6

N5

TX1

TX2

TX1

TX2

TX2

TX1

Bitcoin
N1

N2

N3

N4

N6

N5

TX1

TX2

TX1

TX2

TX2

TX1

Bitcoin
N1

N2

N3

N4

N6

N5

TX1

TX2

TX1

TX2

TX2

TX1

Found
it!

Bitcoin
N1

N2

N3

N4

N6

N5

TX1

TX2

TX1

TX2

TX2

TX1

Found
it!

Bitcoin
N1

N2

N3

N4

N6

N5

TX2

TX2

TX2

TX2

TX2

TX2

Bitcoin
N1

N2

N3

N4

N6

N5

TX1

TX2

TX2

TX2

TX2

TX2

Bitcoin
N1

N4

N6

N5

TX1

TX2

TX2

TX2
I’m
confused

Bitcoin
N1

N4

TX1

TX2

I’m no longer
confused

B2

B2 B3 ...

Loses
!

Wins
!

Hash Pointers

28

h = H()
(data)

Hash chains

29

Creates a “tamper-evident” log of data

data

prev: H()

data

prev: H()

data

prev: H()

H()

Hash chains

If data changes, all subsequent hash pointers change
Otherwise, found a hash collision!

30

data

prev: H()

data

prev: H()

data

prev: H()

H()

Blockchain: Append-only hash chain

• Hash chain creates “tamper-evident” log of txns
• Security based on collision-resistance of hash function

• Given m and h = hash(m), difficult to find m’
such that h = hash(m’) and m != m’

31

txn 7

prev: H()

txn 6

prev: H()

txn 5

prev: H()

Merkle tree

H() H()

H() H() H() H()

H() H() H() H() H() H() H() H()

(data) (data) (data) (data) (data) (data) (data) (data)

Binary tree with hash pointers

Proving membership in a Merkle tree

H() H()

H() H()

H() H()

(data)

show O(log n) items

Can test if
transaction is part
of tree quickly

What Is Blockchain?

• Shared ledger of transactions in a community
• Transactions are:

• Authenticated – only the owner of some given asset can transfer part or all of
it to someone else

• Unforgeable – no one can create fake transactions without others noticing
• Decentralized – no single root of trust, majority decides
• Consensus-based, single copy – branches may exist for a short time but then

they converge to a single copy
• Good for:

• Keeping track of any kind of assets, transactions and contracts
• Double spending visible through multiple transactions on same coin

Bitcoin Address

• To receive money, you tell your wallet to generate an “address”
• This causes the wallet to generate a public-key/secret-key pair
• The public key is hashed and published as your “address”

• Why is it hashed? No good reason, really
• You publish your address

• Or just tell the payer your address
• Why no CA to bind address to your identity?

Receiving Money

• Suppose I want to pay you 1 BTC
• I need your address

• You generated it as in the previous slide

• I generate a “transaction” record and sign it
• Contains the amount, some metainfo, and your address

• Also has hash of previous transaction that granted me the money I’m using
• Signed by my secret key

• If I lose the secret key associated to the transaction that granted me the bitcoins I’m
sending you, I lose that money!

Sequence of transactions

Transaction Record
1. {"hash":"7c4025...", hash of all following

2. "ver":1,

3. "vin_sz":1,

4. "vout_sz":1,

5. "lock_time":0,

6. "size":224,

7. "in":[

8. {"prev_out":

9. {"hash":"2007ae...", hash of previous transaction

10. "n":0},

11. "scriptSig":"304502... 042b2d..."}],

12. "out":[

13. {"value":"0.31900000", 0.319 BTC being sent

14. "scriptPubKey":"OP_DUP OP_HASH160 a7db6f OP_EQUALVERIFY OP_CHECKSIG"}]}
a7db6f is intended recipient

transID: 73 type:PayCoins

PayCoins transaction consumes (and destroys) some coins,
and creates new coins of the same total value

coins created

num value recipient

0 3.2 0x...

1 1.4 0x...

2 7.1 0x...

consumed coinIDs:
68(1), 42(0), 72(3)

signatures

Valid if:
-- consumed coins valid,
-- not already consumed,
-- total value out = total value in, and
-- signed by owners of all consumed coins

Merges multiple payment coins into one new coin
Returns change from overpayment as new coin

transID: 73 type:CreateCoins

CreateCoins transaction creates new coins

coins created

num value recipient

0 3.2 0x...

1 1.4 0x...

2 7.1 0x...

coinID 73(0)

coinID 73(1)

coinID 73(2)

Valid, because I said so.

Verifying Transactions

• Why not just check to see if I properly signed the transaction record?
• I could be cheating!

• Maybe I don’t own the coins I’m sending
• Maybe I already spent those coins with someone else

• So instead the “bitcoin network” verifies the transaction
• This is hard-by-design because there is a nice payoff for doing it
• It also means a cheater would have to have more computing power than the

rest of the network

The Blockchain

• Every verifier (or “miner”) on the network has an entire history of all
transactions

• Called the “blockchain”
• This is a chain of transactions that tracks where each bitcoin has been

• Every transaction has the hash of the previous transaction that granted the
coins

• Once a transaction has been verified, it is added to the blockchain by all
nodes of the network

• Goal: prevent evildoer(s) from verifying bad transactions
• Solution: make it expensive by requiring lots of computations, distribute task

of verification

Hash puzzles

To create block, find nonce s.t.
H(nonce ǁ prev_hash ǁ tx ǁ … ǁ tx) is very small

Output space of hash

Target
space If hash function is secure:

only way to succeed is to try enough nonces until you get lucky

nonce
prev_h

Tx
Tx

How to Mine Bitcoins

• Suppose you want to verify a transaction. Must find nonce such that
N leading digits of hash are zero

• Suppose the transaction is “hello”
• Compute SHA256(“hello:0”)

• a61bb398117fe…

• Compute SHA256(“hello:1”)
• 61b7a90017562…

• …
• Compute SHA256(“hello:917712”)

• 0000718a5dce3… winner!

How hard is this?

• To get a leading 0 digit in hex, assuming SHA256 is random
• 1/16 chance
• 16 expected trials

• Two leading 0’s
• 256 expected trials

• In reality, to verify a bitcoin transaction you have to get below the
target

• This should take about 10 mins given the power of the network
• This is recalibrated every 2 weeks

https://en.bitcoin.it/wiki/Target

PoW property 1: difficult to compute

As of Aug 2014: about 1020 hashes/block

Only some nodes bother to compete —
miners

Key security assumption

Attacks infeasible if majority of miners
weighted by hash power follow the protocol

Solving hash puzzles is probabilistic

Time to next block (entire network)

Pr
ob

ab
ili

ty
 d

en
si

ty

10
minutes

PoW property 2: parameterizable cost

Nodes automatically re-calculate the target every
two weeks: more leading zeroes

Goal: average time between blocks = 10 minutes

Prob (Alice wins next block) =
fraction of global hash power she controls

PoW property 3: trivial to verify

Nonce must be published as part of block

Other miners simply verify that
H(nonce ǁ prev_hash ǁ tx ǁ … ǁ tx) < target

Mining economics

Complications:
• fixed vs. variable costs
• reward depends on global hash rate

If mining reward
(block reward + Tx fees) > hardware +

electricity cost → Profit

Aspects of decentralization in Bitcoin

1. Who maintains the ledger?
2. Who has authority over which transactions are valid?
3. Who creates new bitcoins?
4. Who determines how the rules of the system change?
5. How do bitcoins acquire exchange value?

Beyond the protocol:
exchanges, wallet software, service providers...

Announcing Verification

• Once an entity verifies the transaction it broadcasts it to the network
• The other nodes stop trying to compete

• Because they already lost
• Other nodes verify that the transaction is valid

• Money spent was legitimately owned
• Verifier got below the target

• Then transaction is added to the end of the blockchain

What can a malicious node do?

54

CA → B

CA → A’

Pay to pkB : H()
signed by A

Pay to pkA’ : H()
signed by A

Double-
spending
attack

Honest nodes will extend the longest valid branch

From Bob the merchant’s point of view

55

CA → B

CA → A’

Hear about CA → B transaction
0 confirmations

1 confirmation

double-spend
attempt

3 confirmations

Double-spend probability
decreases exponentially
with # of confirmations

Most common heuristic:
6 confirmations

Assumption of honesty is problematic
Can we give nodes incentives for behaving honestly?

Everything so far is just a distributed consensus protocol
But now we utilize the fact that the currency has value

Can we penalize the node
that created this block?

Can we reward nodes
that created these blocks?

Incentive 1: block reward
Creator of block gets to
• include special coin-creation transaction in the block
• choose recipient address of this transaction

Value varies: was 25 BTC, then halved to 12.5

Block creator gets to “collect” the reward only if the
block ends up on long-term consensus branch!

There’s a finite supply of bitcoins

Block reward is how
new bitcoins are created

Runs out in 2040. No new
bitcoins unless rules change

Year

To
ta

l b
it

co
in

s
in

 c
ir

cu
la

ti
on

First inflection point:
reward halved from 50BTC to 25BTC

Total supply: 21 million

Incentive 2: transaction fees

Creator of transaction can choose to make
output value less than input value

Remainder is a transaction fee and goes to
block creator

Purely voluntary, like a tip – but miner may
only accept transactions with a TX fee

What can a “51% attacker” do?

Steal coins from existing address?

Suppress some transactions?
• From the block chain
• From the P2P network

Change the block reward?

Destroy confidence in Bitcoin?

✗

✓
✗

✗

✓✓

Ethereum

• Like bitcoin
• Proof-of-work
• Hash chains

• Adds smart contracts
• Executed automatically by a transaction

Example: bet on an event

if HAS_EVENT_X_HAPPENED() is true:

send(party_A, 1000)

else:

send(party_B, 1000)

62

How Ethereum Works

• Two types of accounts:
• Normal account like in Bitcoin

• has balance and address

• Smart Contract account
• like an object: containing (i) code, and (ii) private storage

(key-value storage)
• Code can

• Send ETH to other accounts
• Read/write storage
• Call (ie. start execution in) other contracts

63

DNS: The “Hello World” of Ethereum

data domains[](owner, ip)

def register(addr):
if not self.domains[addr].owner:

self.domains[addr].owner = msg.sender

def set_ip(addr, ip):
if self.domains[addr].owner == msg.sender:

self.domains[addr].ip = ip

Private
Storage

Can be invoked by
other accounts

64

Example

65

60606040526040516102503
80380610250833981016040
528........

PUSH 60
PUSH 40
MSTORE
PUSH 0
CALLDATALOAD

.....

What you write

What other see on
the blockchain

What people get from
the disassembler

Transactions in Ethereum

• Normal transactions like Bitcoin transactions
• Send tokens between accounts

• Transactions to contracts
• like function calls to objects
• specify which object you are talking to, which function, and what data (if

possible)
• Transactions to create contracts

66

Blockchain State

Address Balance (BTC)

0x123456… 10
0x1a2b3f… 1

0xab123d… 1.1

Ethereum’s state consists of
key value mapping addresses
to account objects

Address Object
0x123456… X

0x1a2b3f… Y

0xab123d… Z

Bitcoin’s state consists of key
value mapping addresses to
account balance

67
Blockchain != Blockchain State

Code execution

• Every (full) node on the blockchain processes every transaction
and stores the entire state

P6

P5

P4

P3

P2

P1

This is a new
block!

I’m a leader

This is a new
block!

This is a new
block!

This is a new
block!

This is a new
block!

This is a new
block! 68

Dos Attack Vector

• Halting problem
• Cannot tell whether or not a program will run infinitely
• A malicious miner can DoS attack full nodes by including lots of

computation in their txs
• Full nodes attacked when verifying the block

uint i = 1;
while (i++ > 0) {

donothing();
}

69

Solution: Gas
• Charge fee per computational step (“gas”)

• Special gas fees for operations that take up storage

70

Sender has to pay for the gas

• gasprice: amount of ether per unit gas
• startgas: maximum gas consumable

• If startgas is less than needed
• Out of gas exception, revert the state as if the TX has never

happened
• Sender still pays all the gas

• TX fee = gasprice * consumedgas
• Gas limit: similar to block size limit in Bitcoin

• Total gas spent by all transactions in a block < Gas Limit
71

