Blockchain

CS642:
Computer Security

Outline

* Vision of digital cash
e Centralized models
 Decentralized models

* Block chain / distributed ledger
e Bitcoin details
e Ethereum details

A Brave New World - The Vision of David Chaum

INTRODUCTION

Automation of the way we pay for goods and serxvices is already
underway, as can be seen by the variety and growth of electronic
banking services available to consumers. The ultimate structure of
the new electronic payments system may have a substantial impact on
personal privacy as well as on the nature and extent of criminal use
of payments. Ideally a new payments system should address both of
these seemingly conflicting sets of concerns.

On the one hand, knowledge by a third party of the payee,
amount, and time of payment for every transaction made by an
individual can reveal a great deal about the individual’'s
whereabouts, associations and lifestyle. For example, consider
payments for such things as transportation, hotels, restaurants,
movies, theater, lectures, food, pharmaceuticals, alcohol, books,
periodicals, dues, religious and political contributions.

On the other hand, an anonymous payments systems like bank notes
and coins suffers from lack of controls and security. For example,
consider problems such as lack of proof of payment, theft of payments
media, and black payments for bribes, tax evasion, and black markets.

A Brave New World - The Vision of David Chaum

——

Basically ...

® Electronic payment systems suffer from loss
of privacy and cumbersome trust on single
entities.

® Privacy protection, however, encounters
issues of security and safety of data.

Digital Payments

* Credit card approach
* Vendors establish account with payment processor (e.g., PayPal)
* User provides credit card number to vendor

e During transaction, vendor contacts PayPal, which contacts Visa, which
contacts a bank to authorize payment

 Later, sends settlement request to transfer money to seller account

* Properties:
* Expensive to scale: must handle billions of payments
e Supports small number of credit cards
* Identifies buyer (CC#), seller (account #)

Digital cash

* Goal: untraceable money transfers Link with

other banks

 |dea: bank issues digital coins
Withdraw

* Certificates signed by bank with a Coins
value

* User can transfer them as payment to
a merchant

e Merchant can redeem them at a bank
for money

Deposit
Deposit Coins
Coins

Payment

Merchant

Receipt

Goofy can create new coins

New coins belong to me.

signed by pKgeory w
) \

CreateCoin [uniqueCoinID]

A coin’s owner can spend it.

Alice owns it now.

signed by pKgoofy

Pay to pkAlice . H(\)

\

signed by pKgoofy

CreateCoin [uniqueCoinID]

The recipient can pass on the coin again.

Signed by pkAlice

Pay to pkg,y, : H(\)

|

signed by pKgeofy

Pay to pkAlice . H(\)

|

signed by pKgeofy

CreateCoin [uniqueCoinID]

Bob owns it now.

signed by pKkyjice signed by pKyjice
Pay to pkBob . H(\) Pay to kahuck . H(
signed by pKgeofy <«

Pay to pkAlice . H(\)

|

signed by pKgeofy

CreateCoin [uniqueCoinID]

Nick Szabo [1998]

Bit gold

Along time ago I hit upon the idea of bit gold. The problem, in a nutshell, is that our money currently
depends on trust in a third party for its value. As many inflationary and hyperinflationary episodes during the
20th century demonstrated, this is not an ideal state of affairs. Similarly, private bank note issue, while it had
various advantages as well as disadvantages, similarly depended on a trusted third party.

Thus, it would be very nice if there were a protocol whereby unforgeably costly bits could be created online
with minimal dependence on trusted third parties, and then securely stored, transferred, and assayed with
similar minimal trust. Bit gold.

My proposal for bit gold is based on computing a string of bits from a string of challenge bits, using functions
called variously "client puzzle function,"” "proof of work function," or "secure benchmark function.”. The
resulting string of bits is the proof of work. Where a one-way function is prohibitively difficult to compute
backwards, a secure benchmark function ideally comes with a specific cost, measured in compute cycles, to
compute backwards.

http://unenumerated.blogspot.com/2005/12/bit-gold.html

Satoshi Nakamoto and the Anon Post [2008]

Bitcoin open source implementation of P2P currency

Posted by Satoshi Nakamoto on February 11, 2009 at 22:27
£ View Discussions

I've developed a new open source P2P e-cash system called Bitcoin. It's completely decentralized, with no central

server or trusted parties, because everything is based on crypto proof instead of trust. Give it a try, or take a look at
the screenshots and design paper:

Download Bitcoin v0.1 at http://www.bitcoin.org

Satoshi Nakamoto and the Anon Post [2008]

The root problem with conventional currency is all the trust that's required to make it work. The central bank must
be trusted not to debase the currency, but the history of fiat currencies is full of breaches of that trust. Banks must
be trusted to hold our money and transfer it electronically, but they lend it out in waves of credit bubbles with

barely a fraction in reserve. We have to trust them with our privacy, trust them not to let identity thieves drain our
accounts. Their massive overhead costs make micropayments impossible.

Satoshi Nakamoto and the Anon Post [2008]

A generation ago, multi-user time-sharing computer systems had a similar problem. Before strong encryption,
users had to rely on password protection to secure their files, placing trust in the system administrator to keep
their information private. Privacy could always be overridden by the admin based on his judgment call weighing the
principle of privacy against other concerns, or at the behest of his superiors. Then strong encryption became
available to the masses, and trust was no longer required. Data could be secured in a way that was physically
impossible for others to access, no matter for what reason, no matter how good the excuse, no matter what.

It's time we had the same thing for money. With e-currency based on cryptographic proof, without the need to trust
a third party middleman, money can be secure and transactions effortless.

Goals

An electronic payment system:
® Guarantees safety of transactions, protects against double
spends, gives full freedom to owners.
® Yet no central trusted authority, no reliance on quorum since
identities are not known.
® Prevent compromise through proof of work — doing lots of
computations

Bitcoin @
(=

TX1 = [Alice > > < TX2 = [Alice >

Bob] Carol]

(= (=

Bitcoin

@ &

® @

Bitcoin

X2

X1

X1

@ &

® @

TX2

X2

X1

Bitcoin

Here’s what |
know

Here’s what |
know

Bitcoin

X2

X1

X1

@ &

® @

TX2

X2

X1

Bitcoin

@ &

— —
> >
= N

Bitcoin

A
X2

A
X1

Bitcoin

X2

X1

X1

X2

X1

Bitcoin

_ MO
MO

e
)

Bitcoin

_ MO
MO

e
)

Bitcoin

_ MO
MO

I'm
confused

Bitcoin

Loses

! ’
I’'m no longer
confused

Wins

Hash Pointers

o

h=H(')

(data)

Hash chains

prev: H(")

data

prev: H(")

Creates a “tamper-evident” log of data

data

prev: H(")

data

29

Hash chains

prev: H(

A | &

prev: F}L()

If data changes, all subsequent hash pointers change

data

prev: F{()

data

Otherwise, found a hash collision!

30

Blockchain: Append-only hash chain

prev: H()

<« txn 5

prev: H()

txn 6

prev: H()

txn 7

i

* Hash chain creates “tamper-evident” log of txns

 Security based on collision-resistance of hash function
* Given m and h = hash(m), difficult to find m’

such that h = hash(m’)and m !=m’

31

Merkle tree

H() H()
H(|) H()) H(j) H(,))
— e —
H(,) H() H() HG) HG) HG) H(,) H()
VR Y R A A T
(data) (data) (data) (data) (data) (data) (data) (data)

Binary tree with hash pointers

Proving membership in a Merkle tree

l show O(log n) items
H(,) H()

2 U Can test if
v transaction is part
\ of tree quickly

What Is Blockchain?

» Shared ledger of transactions in a community

* Transactions are:
* Authenticated — only the owner of some given asset can transfer part or all of
it to someone else
* Unforgeable — no one can create fake transactions without others noticing
* Decentralized — no single root of trust, majority decides

e Consensus-based, single copy — branches may exist for a short time but then
they converge to a single copy

* Good for:
» Keeping track of any kind of assets, transactions and contracts

* Double spending visible through multiple transactions on same coin

Bitcoin Address

* To receive money, you tell your wallet to generate an “address”
* This causes the wallet to generate a public-key/secret-key pair
* The public key is hashed and published as your “address”
 Why is it hashed? No good reason, really
* You publish your address

e Orjust tell the payer your address
* Why no CA to bind address to your identity?

Receiving Money

* Suppose | want to pay you 1 BTC

* | need your address
* You generated it as in the previous slide

* | generate a “transaction” record and sign it
e Contains the amount, some metainfo, and your address
 Also has hash of previous transaction that granted me the money I’'m using

* Signed by my secret key
* If I lose the secret key associated to the transaction that granted me the bitcoins I’'m
sending you, | lose that money!

Sequence of transactions

Transaction Transaction Transaction
Owner 1's Owner 2's Owner 3's
Public Key Public Key Public Key
e— |]]
1 y : ‘ y : ‘ f :
Hash :\ Hash :\ Hash :\
-~ - \[@,7,)’ ~{ - ‘[6’7@ ~
‘\\\~ y \\\‘ A 4 ‘\\\~
Owner 0's Owner 1's Owner 2's
Signature Signature Signature
/’ c.\“:\\"’ --\“\?"’
’ - ‘ ’ ’ ’ !
Ownerl's | Owner2's | Owner 3's

Private Key Private Key Private Key

Transaction Record

12.
13.

14.

{"hash":"7c4025...", hash of all following
"ver":1,

"vin sz":1,
"vout sz":1,
"lock time":0,
"size":224,
"in": [

{"prev out":

{"hash":"2007ae...", hash of previous transaction
"n":0},
"scriptSig":"304502... 042b2d..."}],
"out": [
{"value":"0.31900000", 0.319 BTC being sent

"scriptPubKey":"OP DUP OP HASH160 a7db6f OP EQUALVERIFY OP CHECKSIG"}]}
a7db6f is intended recipient —

PayCoins transaction consumes (and destroys) some coins,
and creates new coins of the same total value

transiD: 73

type:PayCoins

consumed coinlDs:
68(1), 42(0), 72(3)

coins created

4)

Valid if:
-- consumed coins valid,
-- not already consumed,
-- total value out = total value in, and

num value recipient
0 3.2 0x...
1 1.4 Ox...
2 7.1 Ox...

signatures

-- signed by owners of all consumed coins

Merges multiple payment coins into one new coin
Returns change from overpayment as new coin

CreateCoins transaction creates new coins

transiD: 73

type:CreateCoins

coins created

«— coinlID 73(0)

«—— coinID 73(1)

num value recipient
0 3.2 Ox...
1 1.4 Ox...
2 7.1 Ox...

«——— coinID 73(2)

Valid, because | said so.

Verifying Transactions

* Why not just check to see if | properly signed the transaction record?

* | could be cheating!
* Maybe | don’t own the coins I’'m sending
* Maybe | already spent those coins with someone else

* So instead the “bitcoin network” verifies the transaction

* This is hard-by-design because there is a nice payoff for doing it

* It also means a cheater would have to have more computing power than the
rest of the network

The Blockchain

 Every verifier (or “miner”) on the network has an entire history of all
transactions

e Called the “blockchain”

* This is a chain of transactions that tracks where each bitcoin has been

* Every transaction has the hash of the previous transaction that granted the
coins

* Once a transaction has been verified, it is added to the blockchain by all
nodes of the network
* Goal: prevent evildoer(s) from verifying bad transactions

» Solution: make it expensive by requiring lots of computations, distribute task
of verification

Hash puzzles

nonce

To create block, find nonce s.t. ————

H(nonce Il prev_hash Il tx Il ... II tx) is very small T

Output space of hash

A

A

Target
space If hash function is secure:
only way to succeed is to try enough nonces until you get lucky

Y

How to Mine Bitcoins

» Suppose you want to verify a transaction. Must find nonce such that
N leading digits of hash are zero

Suppose the transaction is “hello”
Compute SHA256(“hello:0”)
* a61bb398117fe..

Compute SHA256(“hello:1”)
* 61b7a90017562...

Compute SHA256(“hello:917712")
* 0000718abdce3.. winner!

How hard is this?

* To get a leading O digit in hex, assuming SHA256 is random

* 1/16 chance
* 16 expected trials

* Two leading O’s
» 256 expected trials

* In reality, to verify a bitcoin transaction you have to get below the
target

* This should take about 10 mins given the power of the network
* This is recalibrated every 2 weeks

https://en.bitcoin.it/wiki/Target

PoW property 1: difficult to compute

As of Aug 2014: about 10%° hashes/block

Only some nodes bother to compete —
miners

Key security assumption

Attacks infeasible if majority of miners
weighted by hash power follow the protocol

Solving hash puzzles is probabilistic

10
minutes For individual miner:

mean time to find block = 10 minutes

fraction of hash power

Probability density

Time to next block (entire network)

PoW property 2: parameterizable cost

Nodes automatically re-calculate the target every
two weeks: more leading zeroes

Goal: average time between blocks = 10 minutes

Prob (Alice wins next block) =
fraction of global hash power she controls

PoW property 3: trivial to verify

Nonce must be published as part of block

Other miners simply verify that
H(nonce Il prev_hash Il tx Il ... Il tx) < target

Mining economics

If mining reward g hardware + | profit
(block reward + Tx fees) electricity cost
Complications:

fixed vs. variable costs
reward depends on global hash rate

Aspects of decentralization in Bitcoin

. Who maintains the ledger?

Who has authority over which transactions are valid?
Who creates new bitcoins?

Who determines how the rules of the system change?
How do bitcoins acquire exchange value?

U N W N =

Beyond the protocol:
exchanges, wallet software, service providers...

Announcing Verification

* Once an entity verifies the transaction it broadcasts it to the network
* The other nodes stop trying to compete
* Because they already lost

e Other nodes verify that the transaction is valid
* Money spent was legitimately owned
 Verifier got below the target

* Then transaction is added to the end of the blockchain

What can a malicious node do?

Double-
N signed by A spending
< < Ci—B Pay to pkg : H(') attack

N
A

sighed by A

Ch— A b

Pay to pky : H(!)

Honest nodes will extend the longest valid branch

From Bob the merchant’s point of view

1 confirmation 3 confirmations

C,—B

A
A

A

Ca—A | double-spend
attempt

Hear about C, — B transaction
0 confirmations

Double-spend probability
decreases exponentially

with # of confirmations

Most common heuristic:
6 confirmations

35

Assumption of honesty is problematic

Can we give nodes incentives for behaving honestly?

Can we reward nodes
« ©a>B « + that created these blocks?
|
Can we p ze the node
S « that crea is block?

Everything so far is just a distributed consensus protocol
But now we utilize the fact that the currency has value

Incentive 1: block reward

Creator of block gets to
include special coin-creation transaction in the block
choose recipient address of this transaction

Value varies: was 25 BTC, then halved to 12.5

Block creator gets to “collect” the reward only if the
block ends up on long-term consensus branch!

There’s a finite supply of bitcoins

— Total supply: 21 million

R Block reward is how
First inflection point: . .
reward halved from 50BTC to 25BTC new b]tCO]nS are Created

Runs out in 2040. No new
bitcoins unless rules change

Total bitcoins in circulation

Year

Incentive 2: transaction fees

Creator of transaction can choose to make
output value less than input value

Remainder is a transaction fee and goes to
block creator

Purely voluntary, like a tip - but miner may
only accept transactions with a TX fee

What can a “51% attacker” do?

Steal coins from existing address? X

Suppress some transactions?

From the block chain
From the P2P network

< XN

Change the block reward?

Destroy confidence in Bitcoin? vV

Ethereum

e Like bitcoin
* Proof-of-work
e Hash chains
* Adds smart contracts
* Executed automatically by a transaction

Example: bet on an event

if HAS_EVENT_X_ HAPPENED() is true:
send(party A, 1000)

else:

send(party B, 1000)

62

How Ethereum Works

e Two types of accounts:
e Normal account like in Bitcoin
e has balance and address
e Smart Contract account

e like an object: containing (i) code, and (ii) private storage
(key-value storage)

e Codecan

. Send ETH to other accounts
. Read/write storage
. Call (ie. start execution in) other contracts

DNS: The “Hello World” of Ethereum

Private
data domains[](owner, ip) Storage

def register(addr):

if not self.domains[addr].owner:

self.domains[addr].owner = msg.sender
Can be invoked by

other accounts

def set ip(addr, ip):

if self.domains[addr].owner == msg.sender:
self.domains[addr].ip = ip

64

Exa m p | e What other see on
the blockchain

1- contract Greetings {

2 string greeting;
3- function Greetings (string _greeting) public { [::::::i>>

4 greeting = _greeting;

5 }

6

7~ /* main function */

8~ function greet() constant returns (string) {
9 return greeting;

10 }

11 3}

What you write

What people get from
the disassembler

Transactions in Ethereum

e Normal transactions like Bitcoin transactions
e Send tokens between accounts
e Transactions to contracts

e like function calls to objects

e specify which object you are talking to, which function, and what data (if
possible)

e Transactions to create contracts

Blockchain State

Bitcoin’s state consists of key Ethereum’s state consists of
value mapping addresses to key value mapping addresses
account balance to account objects

Address Balance (BTC) Address Object

0x123456... 10 0x123456... X

Oxla2b3f... 1 Oxla2b3f... Y

Oxab123d.. 1.1 Oxab123d... Z

Blockchain != Blockchain State

Code execution

Every (full) node on the blockchain processes every transaction

and stores the entire state

This is a new
block!

This is a new
block!

This is a new
block!

This is a new
block!

This is a new

block!

I’'m a leader

This is a new
block!

68

Dos Attack Vector

e Halting problem
* Cannot tell whether or not a program will run infinitely

* A malicious miner can DoS attack full nodes by including lots of
computation in their txs

. Full nodes attacked when verifying the block

uint 1 = 1;

while (i++ > 0) {
donothing();

}

Solution: Gas

Charge fee per computational step (“gas”)

Special gas fees for operations that take up storage

Operation
PUSH1

PUSH1
MSTORE
CALLDATASIZE
ISZERO
PUSH2

JUMPI

Gas

111741

111738

111726

111724

111721

111718

111708

GasCost

3

3

12

10

70

Sender has to pay for the gas

 gasprice: amount of ether per unit gas

 startgas: maximum gas consumable
e |f startgas is less than needed
 Out of gas exception, revert the state as if the TX has never

happened
 Sender still pays all the gas

« TX fee = gasprice * consumedgas
 Gas limit: similar to block size limit in Bitcoin
* Total gas spent by all transactions in a block < Gas Limit

