
POLICY/MECHANISM SEPARATION IN HYDRA

R. Levin, E. Cohen, W. Corwin, F. Pollack, W. Wulf 1
Carnegie-Mellon University

Pittsburgh, Pa.

Abstract

The extent to which resource allocation policies are
entrusted to user-level software determines in large part the
degree of flexibil ity present in an operating system. In Hydra
the determination to separate mechanism and policy is
established as a basic design principle and is implemented by
the construction of a kernel composed (almost) entirely of
mechanisms. This paper presents three such mechanisms
(scheduling, paging, protection) and examines how external
policies which manipulate them may be constructed. |t is
shown that the policy decisions which remain embedded in the
kernel exist for the sole purpose of arbitrating conflicting
requests for physical resources, and then only to the extent of
guaranteeing fairness.

Keywords an_..d Phrases: policy, mechanism, operating system,
resource allocation, scheduling, paging, protection.

1. Introduction

An important goal of the Hydra system is to enable the
construction of operating system facilities as .normal user
programs [WLP75]. Most such facilities provide some form of
virtual resource (e.g. a file, a communication channel) and
require base system resources (processor cycles, memory,
input/output) for their implementation. We must therefore
allow user-level control of the policies which determine the
util ization of these resources. These policies are a major
dimension of operating system variability. As many of us know
from bitter experience, the policies provided in extant
operating systems, which are claimed to work well and behave
fair ly "on the average', often fail to do so in the special cases
important to us. By allowing these policies to be defined by
user-level (i.e. non-privileged) programs, we make them more
amenable to adaptation and tuning than they might be if buried
deep in the system's kernel. Moreover, to permit each
application to tune the system to its own needs, we wish to
allow multiple policies governing the same resource to exist
simultaneously, where appropriate.

At this point, practicality intrudes; in fact, it intrudes in
several ways. First, we must assume that any user-level
program contains bugs and may even be malevolent. We
therefore cannot allow any single user or application to
"commandeer" the system to the detriment of others. By

implication, we must prevent programs which define policies
direct access to hardware or data which could be (mis)used to
destroy another program. That is~ such programs must
execute in a protected environment. L Further, we must not
permit such a program to monopolize any resource, whether it
does so intentionally or not. We must assure some "fairness"
among competing policies~ In addition, we must recognize that
many policy decisions must be made rapidly (e.g. fast
scheduling decisions are essential in order to achieve
reasonable response). Given that user-level policy programs
must execute in their own protection domains, and that domain
switching is costly on C.mmp, it is impractical to invoke such
programs each time a policy decision is required.

Thus, we compromise. We give this compromise a name:
the principle of poUcy/rnechanisnt seperation. Policies are (by
definition) encoded in user-level software which is external to,
but communicates with, the kernel. Mechanisms are provided
in the kernel to implement these policies. In this context we
use the phrase "kernel mechanisms" to mean two distinct but
related things.

In the first instance we mean simply a "safe" (protected)
image of a hardware operation. Thus, for example, we never
allow a C.mmp user to manipulate i/o device control registers
directly. To do so would allow that user, possibly
inadvertently, to overwrite an arbitrary portion of memory.
We do, on the other hand, provide a mechanism, a kernel
operation, whose only effect is to manipulate such device
control registers after appropriate validation. 3 Mechanisms
such as this exist purely to insulate the system and other
users from a misbehaving policy program.

In the second instance a kernel mechanism may actually
be a parameterized policy. Parameterized policies provide the
means by which overall, long-term policies can be enforced by
user-level software, and at the same time avoid a ponderous
domain-switching mechanism for decisions which must be made
rapidly. The existence of such kernel mechanisms seems to

1. This work was supported by the Defense Advanced
Research Projects Agency under Contract F44620-73-C-0074
and is monitored by the Air Force Office of Scientific Research.

2. Obviously, all programs must be denied such liberties, but
policy-making programs frequently require access to
information which might normally be considered privileged.

3. To perform such an operation the user must have a
capability for the device object with the appropriate rights
[CJ75].

contradict the earlier assertion that policies are strictly user-
level pieces of software; hence, we will first attempt to defend
the appropriateness of parameterized policies in the kernel.

The kernel cannot possibly support all conceivable user-
defined policies, since some will violate fairness guarantees or
protection requirements. At best it can provide a mechanism
adequate to implement a large class of desirable resource
allocation policies. The decision to exclude certain policies is
itself a lower-level (i.e. kernel) policy of a sort, but we intend

i t in a practical sense to be a non-limiting restriction which
disallows only "undesirable" policies. Nonetheless, it is still
possible that the precise nature of a particular kernel
mechanism discriminates against certain acceptable policies,
making them intolerably difficult or expensive to implement. In
such cases we have obviously failed to attain the desired goal.
The class of implementable policies is clearly determined by
the type and number of parameters provided by the kernel
mechanisms, and the extent of that class is therefore
dependent upon the designer's insight.

The identification of a piece of software as "policy" or
"mechanism" is a relative one. The implementor of a (virtual)
resource establishes policies for the use of that resource; such
policies are implemented with mechanisms provided by
external software. Thus a hierarchy exists (under the relation
"is implemented using") in which higher-level software views
higher-level facilities as mechanisms. At the base of this
hierarchy rest the kernel mechanisms, several of which we
consider below. Thus, in principle, the kernel contains only
those facilities which we feel could not profitably be
implemented using lower-level mechanisms. 4 These lowest-
level software mechanisms are themselves in fact policies for
user of the hardware resources.

The remaining sections of this paper discuss three
important examples of policy/mechanism separation in Hydra.
The examples are representative of the applications of this
principle but do not exhaust the situations in which it is
relevant. In the sequel the discussion frequently refers to
basic Hydra concepts, e.g. the particular notions of capability
and object that Hydra defines. Familiarity with these notions is
assumed; an adequate understanding can be acquired from
[WLP75,Wu174a].

2. KMPS

KMPS (the Kernel Multiprocessing System) is that portion
of the kernel which implements a mechanism to support
policies for scheduling user processes. Parameterized
schedulers are not a new idea [BS7I], but the intent in Hydra
differs somewhat from most other systems in which this
concept is employed. Our goals with respect to this mechanism
were: (1) to permit a process scheduler to run as a user level
process, and (2) to allow multiple schedulers to run
concurrently. We call a user-level scheduler a Poli.cy Mod=le
(PM).

4. In practice, we include a few facilities in the kernel which
are logically non-primitive, but which, for efficiency reasons,
require more direct access to the hardware. Alternative
hardware architectures would permit exclusion of these
mechanisms from the kernel.

Each process has an associated PM that is responsible
for making the scheduling decisions related to that process;
typically a single PM will be responsible for scheduling several
user processes. Thus at some point in time, one PM might be
controlling normal "time sharing" user processes. A second PM
may simultaneously be scheduling background "batch" tasks. A
third PM might have special knowledge of the manner in which
its processes are cooperating and use this information to
effect a more efficient use of machine resources than
otherwise would be possible. Lastly, we may have a fourth PM
being debugged. KMPS guarantees that an error in one PM
can have no deleterious effect on the remaining PMs.

The KMPS mechanism is in fact a parameterized policy,
for two reasons. First, scheduling decisions must be made
rapidly; we cannot afford to invoke the overhead involved with
switching protection domains (i.e. a Procedure call) each time a
scheduling decision must be made. Second, KMPS serves as a
focal point at which it is possible to adjudicate the competing
demands of distinct PMs. Since KMPS bases its short-term
scheduling decisions on the parameters set by the PMs, it
provides the mechanism by which short-term scheduling policy
can be made by the PM. Since any short-term policy must be
implemented by use of this mechanism, not all scheduling
policies are possible or practical; however, we believe the
mechanism provided is general enough to permit a large
number of interesting ones.

Before proceeding with the details, we present a
general description of the interaction between a process, the
PM which controls it, and KMPS:

A process is an object. The PM which is
responsible for the process must have a
capability for it with appropriate rights.
Assuming that the PM has such a capability, it
may perform certain kernel-defined operations.
For example, it may set the parameters which
will control the short-term behavior of KMPS
with respect to that process and may also
"start" the process, that is, allow KMPS to
schedule it.

The act of starting a process yields control of it
(temporarily) to KMPS. When a process is
started, its pages will be brought into core (by
the paging mechanism to be discussed in
section 3), and will remain in core until the
process "stops" (i.e. leaves KMPS). As soon as
the process is present in core, KMPS will begin
scheduling the process for execution, and the
process will then compete for pi'ocessor cycles
with all other processes which have been
started by some PM. As noted previously, the
behavior of KMPS with respect to the process
is determined by the parameters set by the PM.

Under any of several conditions the process
may be "stopped" (removed from KMP$); we
shall mention some of these conditions later.
For the moment the important property is that
when a process is stopped, KMPS, returns
control of it to the PM, and the core it occupies
is freed. KMPS always sends notification of the
fact that a process has been stopped back to
its controlling PM. The PM then has the option
of restarting the process immediately or waiting
some period before doing so. The PM may also
alter the process's scheduling parameters at
this time.

133

Thus, if we look at the execution history of a single
process, we would see periods during which the process is idle
(stopped) and under exclusive control of the Plvl, and other
periods during which it is being actively multiplexed onto the
processor resources by KMPS. Closer examination of the
various active periods might show quite different behavior if
its scheduling parameters were set differently each time it was
started.

2.1 Scheduling Mechanism

Viewed externally, KMPS defines two types of objects:
objects of type process and objects of type poEcy. A process
object corresponds to the usual informal notion of a process;
that is, it is an entity which may be scheduled for independent
execution. The data part of a process object, called the
Process Context Block (PCB), holds state information (e.g.
scheduling parameters). The C-list of a process object holds
capabilities corresponding to a stack of LN$ (Local Name
Space, see [Wu174a]) objects. The 'top' LN$ in this stack
defines the current 'protection domain' of the process. Each
LNS is a dynamic incarnation of a PROCEDURE. Both LNS and
PROCEDURE (as well as PROCESS and POLICY objects) are
object types predefined and supported by the Hydra kernel.

A policy object is the kernel's image of a PM;
furthermore, since each process object points to precisely one
policy object, the kernel knows which PM to inform when a
process is stopped. Actually, a policy object is no_j. a PM;
rather, if is a 'mailbox' to which the kernel sends 'messages' to
inform a PM that one of its processes has been stopped. We
shall see the significance of the distinction between PMs and
policy objects in a moment.

KMPS defines a number of operations 5 on process
objects:

START(process): START of a process causes
KMPS to enter the process into its scheduling
queues. KMPS will then select the process to
run based on its parameters as set by its PM.

STOP(process): STOP will cause the specified
process to be stopped (if it is running) and
removed from the KMP$ scheduling queues;
notification that the process has been stopped
is returned to the PM through the mechanism
described below.

SETPCB(process,data): SETPCB allows the PM to
set those fields in the PCB (process context
block) which control KMPS scheduling decisions.

GETPCB(buffer,process): GETPCB allows the PM
to retrieve information from the PCB.
Specifically, certain useful process state
information (e.g. elapsed runtime) may be
determined in this way.

5. For clarity, we omit discussion of the rights requirements
imposed on the parameters to these operations. It shoutd be
obvious that appropriate rights are necessary to control
application of these operations to processes. In addition,
descriptions of the operations presented here are somewhat
simplified.

KMPS also defines a number of operations on objects of
type POLICY; the following are simplified versions of two of
these operations:

SETPOLiCY(process,policyobj): This operation
associates the .given policy-object with the
process.

RCVPOLICY(buffer,policyobj): This operation
performs a 'receive' from the mailbox of
messages in the policy-object concerning
processes under this PM's control, if the
mailbox is empty, the process executing the
RCVPOLICY operation is blocked until a message
arrives. When a message is eventually
received, it is stored into the specified buffer in
the process's core. This information identifies a
particular process (under the PM's control) and
indicates why KMPS felt a policy decision was
required on the process's behalf.

Earlier we skirted the issue of exactly what a policy
module is. It should now be clear that a PM is nothing more
than a process which possesses a capability for a policy object
(with appropriate rights). In addition, a PM holds capabilities
for the processes under its control, again with rights adequate
to perform the above operations, in fact, we can establish an
operational definition of a PM as a set of programs
(procedures and processes) which possess such adequately
endowed capabilities for some collection of processes and a
policy object. Notice that, with this scheme, what is logically a
single PM may be in fact implemented as a number of
processes. For example, several processes may be waiting on
the mailbox of the same policy object, in effect acting as
multiple servers, and cooperating to effect a single scheduling
policy. This 'multiple server' ability may be essential to
smooth response in a busy interactive environment.

2.2 The Parameterized KMPS Policy

The scheduling policy parameters of a process as set by
its PM include priority, processor mask, time quantum, and
maximum current pageset (CPS) size (see section 3). KMPS
uses a priori ty scheduling algorithm; thus a process will run
before another process scheduled by the same PM at a lower
priori ty.

The processor mask of a process specifies which
processors in the system are permitted to run the process.
The mask is necessary since not all processors in C.mmp are
identical; for example, only certain processors have floating
point hardware. Thus a process exploiting the additional
hardware will want to restrict its scheduling to the appropriate
processors.

The time quantum specifies the amount of execution time
a process is to receive before it is to be stopped. The time
quantum is broken up into time slices (0.5 seconds maximum)
and number of time slices, both of which are specified by the
PM. At the end of a process's time slice, KMPS may elect to
run another process. After the specified number of time
slices, i.e. at the end of the time quantum, the process is
stopped and returned to the PM via the policy object mailbox.

134

A process may stop for other reasons, e.g. blocking on a
semaphore or returning from its base LNS (process
termination). In these cases, as when the time quantum ends
or an explicit STOP occurs, KMPS ceases execution of the
process and places an entry in the appropriate policy object
mailbox. Thus the PM is informed when processes stop (or, as
in the case of semaphores, can be restarted) for non-PM-
induced reasons. Let us consider the case of semaphores in
more detail.

When a process blocks on a semaphore, KMP$ stops it
as previously described. However, the fact that the process is
blocked is not lost, and when the process is subsequently
unblocked (by a V of the semaphore by another process),
KMPS again places an entry in the policy object mailbox. This
second entry is simply a notification that the mechanism of
unblocking has occurred; the policy of rescheduling the
infeasible process for execution is still the responsibility of the
PM. Until a subsequent START operation is performed, the
process will not be rescheduled. Thus KMPS only implements
(and enforces) the blocking and unblocking mechanisms, leaving
scheduling policy to the PM.

There are a number of additional policy/mechanism
separation issues relating to parameterized policies. We will
deal with them at length in the section on Control Protection.

2.3 Multiple Policy Modules

At the beginning of this section we stated two goals: (1)
to permit user-level control of the scheduling policy, and (2) to
support multiple scheduling policies simultaneously. The
preceding discussion has focused on the first goal; we now
turn our attention to the second.

The desire to allow multiple PMs (controlling disjoint
sets of processes) is a natural one. We would like to assign
some fraction of the processing resources to each PM, and
guarantee that the individual PkAs stay within their allocated
limits. This puts KMPS in the position of enforcing a fixed
policy for CPU usage, a policy that has very little dynamic
variabil ity. Clearly, then, the kernel is not devoid of policy,
yet the policy/mechanism distinction does not break down;
where policy is clearly embedded in the kernel, it is there for
the sole purpose of assuring fairness to (competing) user-level
policies. As we shall see, KMPS in its role of PM-adjudicator is
not trying to optimize short- or long-term CPU utilization, but
is only assuring each PM that it may use an agreed-upon
fraction of CPU resources.

We will not discuss the details of the guarantee
algorithm, since it has not been implemented (though some
simulations have been performed). In general terms, however,
the algorithm allocates to each PM a "rate guarantee". That is,
the PM can expect to receive, upon request, a fixed
percentage of the CPU cycles deliverable over a given time
interval. This is a guaranteed minimum; available excess cycles
will be made available to each PM. We refine this guarantee
somewhat to account for the heterogeneous nature of the
processors by partitioning the CPUs into classes and providing
each PM a rate guarantee within each class. By "guarantee" in
this context, we mean that the PM will, with high probability,
receive on demand its allocated fraction of the resources.

To illustrate that the policies which the kernel is
obligated to implement are introduced to enforce fairness
criteria alone, we list the goals of the scheduling guarantee
algorithm:

(1) Each PM should receive a guaranteed
percentage of the CPU time available within
each processor class.

(2) If a PM does not consume its guarantee
during any interval, the excess should be
distributed fairly among other PMs.

(3) if a PM fails to receive its guarantee during
an interval, an attempt should be made to
give it slightly more than its guarantee in
succeeding interval(s).

(4) A process's priority should only affect its
scheduling with respect to other processes
of the same PM.

(5) When a process of a given PM is selected to
run on a processor, it is generally the
highest priority process started by that PM
that can run on the available processor.
Processes assigned the same priority level
by a PM are scheduled in a round-robin
manner.

3. Paging

This section examines the policy/mechanism issue in the
context of paging operations. As with KMP$, the mechanism is
in fact a parameterized policy in the kernel; but as we shall
see, control over paging is more indirect than control over
scheduling. Before proceeding to the issue of policy, however,
we must first examine the user-visible properties of the
paging mechanism. These properties are, unfortunately,
strongly affected by the hardware architecture of C.mmp.

The single largest impact results from the PDP-11
processor; specifically from the fact that it is able to generate
only a 16-bit address. Thus user programs at any instant may
address at most 64K bytes, or 32K words. The second largest
impact arises from the fact that the relocation hardware
divides the user's address space into eight 8K-byte units
called page ,frames. Since this is a rather small address space,
much of the design of the paging system is oriented toward
making these restrictions somewhat more comfortable. A third
impact of the hardware architecture is that the relocation
hardware is incapable of supporting demand paging (in the
conventional sense of that term). A single -PDP-11 instruction
may access as many as six distinct pages and may have side
effects on the processor registers between some of these
accesses. The C.mmp relocation hardware does not retain
sufficient processor state to allow these side effects to be
undone if a fault occurs. As a result, Hydra must insure that
pages referenced by the relocation hardware are actually
present in primary memory.

In the following material we shall usually use the term
page to refer to an object, in the Hydra-technical sense of that
word, of type PAGE. in some contexts the term page may also
mean the information contained in the PAGE object. The term
page frame, or simply frame, will usually be used to refer to
the area of physical primary memory (core) in which the
information content of a page object resides. The term 'frame
is also used to indicate a portion (1/8th) of the user's address
space. Context should disambiguate these uses.

135

3.1 Paging Mechanism

Since pages are objects, a user program may, and
generally will, have one or more capabilities which reference
specific pages. These capabilities may be in an executing LNS
or contained in some object, which can be named by a path
rooted in the LNS. Possession of a capability for a page,
however, does not make it addressable. In particular, it is
possible that many more pages may be named through some
particular LNS than can be simultaneously addressed by the
C.mmp hardware. Thus the paging system defines means by
which the user may specify and alter the set of page objects
which are physically present in primary memory and which
may be directly accessed at some instant.

Each active LNS has associated with it a CPS (current
page set) and an RPS (re~ocat/.on page set). The sat of pages
referenced by the CPS is guaranteed to be in core while the
LNS is executing. The set of pages in the RPS (a subset of
those in the CPS) is precisely the set of page frames which
are currently named by the relocation hardware of C.mmp.
Thus the pages in the RPS are those whose information may
be accessed directly by instructions executed by the user's
program. Of necessity the RPS must refer to eight or fewer
pages. No such size restriction exists for the CPS.

The LNS, CPS, and RPS effectively define a three-level
memory system -- those pages nameable by, or through, the
LNS, those named in the CPS, and those named in the RPS.
Normally each of these is a subset of the preceding (the

except ion being that once a page is loaded into the CPS it may
be deleted from the LNS). Each of the sets also implies more
rapid access than its predecessors. The pages in the RPS are
both in core and addressable, those in the CPS are in core but
not addressable, and those in the LNS may not even be in core.

For small programs the three sets may be identical, and
the user need not concern himself with paging. For larger
programs, larger than 32K words, the user is required to
manage these sets; the way in which the user does this may
significantly affect the performance of the program. Several
kernel operations are provided to manage these page sets;
slightly simplified versions of two of these follow:

CPSLOAD(Cpsslot,Page) causes a capability for a
page object to be loaded into the specified slot
of the current CPS. There are two side effects
of this action. First, any previous capability in
this CPS slot is implicitly deleted; the page
object named by the deleted capability is no
longer required to be in core by the current
LNS, hence it may be eligible to be swapped
out. Second, the page named by the capability
just placed ihto the CPS may now have to be
brought into core; that is, it may have to be
swapped in.

RRLOAD(Rpsslot,Cpsslot) causes appropriate
information to be placed into the hardware
relocation register associated with 'Rpsslot' so
that the page referenced by the capability in
the specified slot of the CPS may be directly
addressed. Of course the information
previously contained in this relocation register
is removed at the same time; however, this
page remains in the CPS and hence is still
resident in core.

Several additional points need to be made before we
deal with the policy/mechanism issues. First, notice that a
page is conceptually in core as soon as a user moves a
capability for a page object into the CPS. [n practice the page
need not be physically present until it is moved into the RPS.
It is therefore reasonable to allocate a page frame as soon as
a CPSLOAD is performed, and to initiate an i/o transfer if
necessary, but not to suspend the program unless an RRLOAD
is performed before the transfer is complete.

Second, only the "top" CP$ of each process, that is the
CPS associated with its current LNS, needs to be core-
resident.

Third, each procedure object contains information about
the initial CPS/RPS configuration to be associated with an LN$.
This information is given in the form of a set of pairs of
indices; these pairs invoke implicit CPSLOAD and RRLOAD
operations when a procedure is called. Thus whenever a
procedure is called, it begins executing in an environment in
which a specified set of pages are in core and addressable.
This initialization is performed after the LNS has been
incarnated; thus page objects passed as actual parameters may
be part of the initial environment.

Fourth, the kernel mechanism which provides facilities to
control paging policy is subject to several constraints --
including the physical memory size. The most important
constraint, however, is imposed by the assumption made by
KMPS that the RP$ for every feasible process is in core. Note
that as in all allocation systems, allocation decisions for distinct
resources are not independent. Even if it were feasible to
completely decouple, for example, paging and scheduling
decisions, it would probably be unwise to do so. The
particular coupling described below is possibly too strong, but
it is the only formulation we have as yet found to be practical
to implement.

3.2 Paging Policy

There are three issues of paging policy that we have
had to face in designing the Hydra kernel: process paging,
guarantees, and replacement. We will present each briefly and
then discuss them in more detail.

All pages in the top CPS of each process in KMP$ must
have a page frame allocated in core. Two alternatives present
themselves. Either the PM directly handles the paging for each
process under its control or as much of the mechanism as
possible (and hence, some of the policy) is left to the kernel.
We have chosen the latter alternative, tightly coupling the
mechanisms for paging and scheduling.

Multiple PMs may be competing for limited memory in
which to run their processes. We will describe a mechanism
that allocates a guaranteed number of pages to each PM in
order to assure fairness.

Whenever pages are placed in core, other pages may
have to be displaced. Thus, there is a need for a page
replacement policy. One might assume that each PM could
manage its own guaranteed set of pages. The kernel would
only need to provide a mechanism that would allow a PM to

]36

designate which page among its guaranteed set could be
replaced. 6 For various reasons, that assumption is inadequate
and a more sophisticated mechanism (one which includes quite
a bit of policy) has been provided instead.

3.2.1 Process Paging

We have decided to let the kernel handle process paging
essentially automatically. There are three situations in which
this automatic paging is done:

(1)

(2)

(3)

Whenever a PM "starts" a process, i.e. gives
control of it to KMPS, the paging mechanism
will cause the pages in the "top" CP$ to be
brought into primary memory.

Whenever a process "stops", i.e. KMPS yields
control of the process back to the PM, the
pages of the "top" CP$ are made eligible to
be transferred out of primary memory
(except, of course, for any shared pages
which are referenced by the "top" CPS of
some other runnable process).

Whenever the top CP$ of a process changes
(i.e. via call or return of an LN$) the pages in
the new CPS are automatically brought into
core and those in the old CP$ are made
eligible to be transferred out of primary
memory (except, as above, for shared pages).

Obviously many paging policy decisions are implicit in
the PM's actions in starting or stopping processes. By
Choosing which processes will run at any instant, the PM is
also choosing the pages to be core-resident. This is no~t
however, adequate control. An individual process may alter
the size of its CP$, and hence its memory requirement. It may
do this directly, by CPSLOAD's, or indirectly by calling (or
returning from) LNSs with different, possibly radically
different, storage requirements. Thus, unless more control
were provided, it would be possible for wild fluctuations to
occur in the storage requirements of a collection of processes
unbeknownst to the PM controlling that collection.

One could, of course, have the kernel mechanism stop a
process and send a message to the PM each time a paging
decision must be made, i.e. each time the process invokes
CPSLOAD or changes its LN$. Just as with KMPS, we choose
not to do this, but to have the PM yield control over "local", or
"short term" paging decisions to the kernel. As with KMP$ we
also parameterize the kernel paging policy and allow the PM to
set these parameters -- thus influencing the short term policy.

In the case of paging there is at present only one (per
process) parameter. The PM may specify, for each process
under its control, the maximum CPS size for that process.
Thus, in effect, the PM may place a limit on the number of
page frames a process may use at any instant. Only if a
process, as the result of either CP$LOADs, calls or returns,
exceeds this limit, is the process automatically stopped. At
such points, the PM may intercede and decide to allow the
process to proceed (by altering the CP$ limit) or allow the
process to remain stopped until the requisite memory

6. The kernel would of course have to check that the page did
not belong to the top CPS of any process associated with that
PM.

resources are available. The point, of course, is that as long
as a process operates within specified resource limits there is
no need for the PM to interfere (or to evoke the overhead
associated with doing so).

3.2.2 Paging Guarantees

Each PM is guaranteed a specified number of page
frames. The s~Jm of these guarantees across all PMs is equal
to the number of available page frames. Thus. the guarantee
acts as a limit as well, for the sum of the CPS limits for the
processes under the control of a particular PM and which are
runnable (in the sense of being under the control of KMPS) is
constrained not to exceed the guarantee. Thus, each PM can,
and should, attempt to control the processes for which it is
responsible in a way which effectively utilizes the memory
guaranteed to it.

Unfortunately, this paging guarantee is too strong, since
it restricts resource allocation rather than merely insuring it,
and thereby leads to inefficient use of primary memory. For
example, a PM has no easy way to know to what extent the
processes it controls share pages. Hence the number of
frames used by a collection of processes may be less than the
sum of their CPS limits and the PM may not know it. Under
such circumstances the PM will use the memory resource less
effectively than it might. This problem might be resolved fairly
easily for pages shared between processes controlled by the
same PM, but it is difficult to see how to resolve for pages
shared between processes controlled by distinct PMs.

A possible solution to this problem allows a PM to
exceed its guarantee as long as page frames are available.
Availabil ity may be due not only to sharing of pages by
processes within or across PMs, but may be due to under-
util ization of page frames by another PM.

This solution is not without difficulties. The extra page
frames may suddenly become unavailable, if, for example, a PM
under guarantee wishes to utilize its entire guarantee. In that
case, we must embed another bit of policy in the kernel to
determine how those extra pages are to be reclaimed from
PMs over guarantee. An obvious example solution involves
stopping the lowest priority process of the PM most over
guarantee and continuing doing this until the requisite number
of pages become available. 7 Other factors that might affect the
policy include the number of non-shared pages used by the
process and the length of time it has been in KMPS. We have
not yet determined the best criteria for this kernel paging
policy.

3.2.3 Page Replacement

Whenever a new page is made core-resident, it is
necessary to choose a frame to hold it. This choice is called a
replo.cern.ent policy because it (potentially) implies replacing a
page which is already in core. This choice can significantly
affect system performance. One hopes that if the policy is
clever, frequently used pages will not be replaced and hence
will not have to be reloaded into primary memory.

7. Remember that when a process stops, all pages in its top
CPS (except those shared with runnable processes) become
eligible to be transferred out of primary memory.

137

There are two factors that make page replacement more
complex than originally suggested in the introduction to this
section~

(1) As long as a process does not exceed its CPS
limit, it need not be stopped and may load
and unload pages from its CPS without its
PM's knowledge. Thus the PM does not know
exactly which of its pages are actually in
core.

(2) Sharing of pages, especially by processes
under the control of different PM"s makes it
difficult for a PM to know when a page is
really eligible to be swapped out.

Even if the information needed could be made available
to a PM, it might not be valid when used, since it can change
quite dynamically. The difficulties associated with (1) are a
direct result of our decision to let the kernel handle "short-
term" paging decisions. But, the difficulties associated with (2)
are independent of the amount of direct control a PM has over
the paging of its processes. It appears to us that unless the
kernel is the ultimate arbiter of replacement, memory will be
under-uti l ized in the case of sharing of the degree we expect
in Hydra.

The yielding of replacement policy to the kernel has
another benefit, one associated with protection. We neither
require nor expect that PMs will be correct or even
trustworthy. Therefore, it is important that a PM be able to
gain as little information as possible about processes under its
control. Paging mechanisms different from the one adopted for
Hydra have the disadvantage that far more information
regarding the paging behavior of a process (perhaps even
including the identity of individual pages) would be made
available to a PM. This would provide an additional covert
channel for leaking sensitive information [Lam73,CJ75].

A substantial body of literature exists on the behavior
of various replacement algorithms [e.g. Den68pBe166,Den70].
Two properties of the current context suggest an algorithm
slightly different from the usual ones. First, the CPS is, in
effect, the "working set" of a process. These are guaranteed
to be core-resident The replacement algorithm chooses only
among the frames occupied by pages not present in the CP$ of
any processes which can be scheduled by KMPS. Second, the
kernel is able to keep track of information about how various
pages are used -- it can determine, for example, whether the
page belongs to the "top" CPS of a "stopped" process, the nth
CPS (from the top of a CPS stack) of a running process,
whether it is not in any CPS, etc. Thus the kernel can make a
reasonable guess at the likelihood that a page will be needed
again in the near future.

Whenever a page becomes eligible to be swapped out,
the first thing done is to make sure that a valid copy of the
page exists in secondary memory. The "dirty bit" in the
hardware relocation registers is examined to determine
whether the page has been modified since it was last written
out~ if the dirty bit is set, the page is copied to secondary
memory and the bit reset. As soon as it is certain that a valid
copy of the page exists, its frame is made eligible for
replacement.

The scheme for replacement is to assign a "priority" to
each replaceable page and to replace the pages in reverse-
pr ior i ty order. Pages of the same priority are replaced on a
least-recently-used basis. The priority of a replaceable page,
P, is defined as

Priority(P) = ~ C(r)
r(Ref(P)

where 'Ref(P)' is the set of references (in some CPS) to P and
'C(r)' is a cost-function. The value of C(r) depends upon the
nature of the reference (from a stopped process, second
position of the CPS stack of a runnable process (one in KMPS),
etc.). If the page again becomes part of the top CPS of a
process in KkAPS before it has been replaced, a transfer from
secondary memory is avoided. The nature of C has not yet
completely been fixed 8 and will depend upon additional
experience and simulation.

At present, a PM has no way to specify information it
may have concerning page utilization to the kernel mechanism.
A PM may know that a process may not be stopped for long.
In that case, it would be desirable that pages referenced from
that process's CPS have a higher cost value. One might even
imagine extending the mechanism so that, if a PM had a way to
increase the priority of a process's pages prior to starting it,
the kernel mechanism would try to insure, by prepaging if
necessary, that the process's pages will be in core. One might
also have to provide a way for a PM to designate a certain
number of its guaranteed page slots be reserved for such
highly valued pages even though they are not actually in use
by runnable processes.

A user program also may have information relevant to
the paging mechanism. For example, an LNS which constantly
moves pages in and out of its CPS may want to identify certain
"important" pages. Such pages, though not in the CPS, should
be retained in core if possible and at the expense of other
pages not present in the CPS. In terms of the current
formulation of the paging mechanism, the LNS wants to
influence the priority calculation for its "important" pages. At
present, there is no way to accomplish this weighting of the
page priority, although, as with weighting desired by the PM
described above, it could probably be accommodated without
much difficulty.

3.2.4 The Effect of the Hardware

The hardware architecture has had a major impact on
the form of the mechanism for paging presented to the user.
The inadequacy of the information retained in case of a fault
combined with a limited address space prevents demand paging
and forces the user to explicitly define a working set (CPS).
Yet while these design "features" have had profound effects
on the mechanism, they are actually quite independent of the
policy/mechanism separation issues discussed above.

If hardware permitted an extremely fast context swap,
PMs could exercise much tighter control over process paging.
Each time a process reduced or increased the size of its CPS,
the PM could be invoked, thereby removing short-term paging
decisions from the kernel. (To an extent, this applies to
scheduling decisions as well.)

8. At present C(r) is 2 if r is referenced in the top CPS of a
runnable process, ! if r is from the next to top CPS of a
runnable process, and 0 otherwise.

138

However, as with scheduling, the real need for certain
kernel-centered policies arises from the presence of multiple
policy modules, no one of which is guaranteed to be correct.
The problems related to guarantees, sharing and replacement,
are all induced by multiple PM's and are present no matter
whether CPSs change implicitly or explicitly.

4. Protection

In contrast to scheduling and paging, the Hydra
protection structure provides a clear separation of mechanism
and policy. It is the intent of the design to provide a set of
facilities which can solve a broad class of protection problems,
but which a user program need not use if it is not concerned
with protection. In this regard the kernel protection
mechanism is a passive one, while scheduling and paging
demand at least a limited amount of PM action.

4.1 Access Protection

Hydra provides a capability-based system which very
naturally supports selective access to information. The
particular character of the protection mechanism exhibits some
aspects of policy, especially in the sense that certain kinds of
protection structures can be constructed more naturally than
others. For example, that type of protection best known as
information hiding [Par72b] is available directly in Hydra
through the construction of sul?systems built around extendible
types [WLP75]. Only indirectly (though quite naturally)
through the construction of subsystems can users build other
protection structures, for example, access control lists or
military security classification systems [JoW74]. At the same
time, this structure provides an elegant framework for
mechanisms which permit the solution of a number of important
protection problems, including confinement and selective
revocation [CJ75].

In general, the kernel does not force a user to share
information with or execute code supplied by another user.
Where cooperation is desirable, the kernel supplies a variety
of mechanisms that permit users to generate policies that will
protect them insofar as is possible. These are described in
[CJ75] and will not be dealt with here.

4.2 Control Protection

In one case, the kernel does force interaction. If a user
program expects to get any work done, it must interact with a
PM that it may not necessarily trust. 9 Even though a PM does
have a capability for all processes under its aegis, it in fact
cannot gain access to any capabilities or data in any LNS or
CPS associated with the process. In addition, the nature of the
paging and scheduling mechanisms make little other information
available to the PM. So, interaction with a PM does not
provide any significant additional concern over access
protection. Protection of control is another matter.

9. It may, of course, demand its own certified PM, but we are
concerned with less inflexible users.

A procedure may be called by any program that can
gain an appropriate capability for the procedure. Thus, an LNS
(incarnated from an arbitrary procedure) in general has little
control over the PM under which it is being scheduled. A PM
that schedules it erratically (or perhaps not at all) may cause
as much (or more) harm as a failure in access protection. The
kernel provides a number of mechanisms that support policies
aimed at protection of control.

4.2.1 PM Identification

As an example, consider a spooling subsystem. Through
the kernel's general message system (which will be described
in a later paper), a number of processes send output to the
subsystem. The subsystem is simply an LNS that has
capabilities that permit it to receive these outputs plus a
capability that permits it to output to the line printer. This
LN$ executes in some process which runs under some Pk4. The
builder of the spooling subsystem is very aware that unless
the process is scheduled reasonably, it will not be able to
satisfy its specifications. It requires a trustworthy PM with a
reasonable collection of paging and scheduling guarantees.

Associated with each policy object is some data that can
be altered only by the "system administrator". 10 By
convention, this data includes information about the
trustworthiness and reliability of a particular PM, as well as its
scheduling and paging policies and other services it may
provide. 11 Any LNS (in particular the spooler) can access all of
this information for the Rvl under which it is being scheduled,
and may use the data to decide whether or not it will even try
to provide its service. Here Hydra provides simply an
informational mechanism, but one that permits subsystems to
posit complex policies regarding the conditions under which
they will attempt to provide service.

4.2.2 Negotiation with a PM

A more severe requirement for control protection arises
in the execution of critical sections. Consider, for example, a
data base subsystem. Only by calling a procedure supplied by
this subsystem can users access the data base. Since multiple
LNSs may be instantiated from this procedure, each in a
different process, each attempting access, the procedure code
contains a number of critical sections (which can, but need not,
be implemented using semaphore objects). Once a process has
entered a critical section, it is fairly important that it not be
stopped until the critical section is exited, else other processes
might be unnecessarily delayed. In the most extreme case, a
PM may stop a process in the midst of a critical section and
never restart it.

To solve this problem, the kernel provides a number of
mechanisms that allow negotiation to take place between a
process and its PM and that guarantee the results of the

10. This is enforced, of course, by appropriate rights to the
policy ob jec t .

11. There also exists a mechanism by which a PM can associate
with each process under its aegis a set of capabilities. Any
LN$ executing under such a process can obtain any of these
capabilities. Presumably these capabilities can be exercised to
share information with the PM that will permit it to schedule or
page the process more effectively.

139

negotiation. Before presenting our solution to the problem of
critical sections, we will look at several other instances where
negotiation mechanisms are useful.

We noted that processes are stopped whenever they
are blocked on a semaphore and can be restarted by a PM
after the process is subsequently unblocked. In fact, the PM
may restart the process before it has been unblocked. The
process will be notified of the PM's unusual action by getting
an error return from the P operation on the semaphore.
Ordinarily, in the case of mutual exclusion, a process passing a
P may expect that it has sole access to some resource. By
allowing a PM to arbitrarily restart the process, this need no
longer be true. To facilitate debugging and recoverability, we
might imagine that the PM could establish a non-kernel
mechanism that could be used to notify a process in the case
of abnormal restarts. The decision fixing the circumstances
under which a process is to be restarted could be negotiated
through that mechanism. However, this is inadequate in the
case of erroneous or malicious PMs. Instead, the kernel
guarantees the result of the negotiation by providing an error
return on abnormal starts.

A process's processor mask provides another example of
negotiation. In our earlier discussions of KMPS we noted that
the mask is set in each process by the PM. In fact, the mask is
actually determined by the top LNS executing under a process.
It is necessary that the mask be able to change at least when
the top LNS of a process changes. Each LNS is an incarnation
of a distinct PROCEDURE and each may have distinctly different
processor needs. Accordingly, each LNS has a field containing
the mask of processors on which it will permit itself to run.

Each time an operation is performed which would
necessitate a change in processor mask (e.g. changing LNSs),
the process is stopped. The stop message sent to the policy
object mailbox includes the allowable mask. The PM may then
restart the process after changing the mask to the allowable
one, or some subset of it. Suppose, however, the requested
mask is not acceptable to the PM (e.g. too many other
processes have requested the same special processor). Of
course, the PM could keep the process suspended until the
desired special processor became free. The mechanism
provided, however, is a bit more robust. As in the previous
example, if the process is restarted with an unacceptable mask,
the operation which required the change in mask will fail with
an error return. This again puts the kernel in the role of
guaranteer of a negotiation.

CPS limits provide another example of a case in which
negotiation is desirable, and the kernel mechanism supplied is
the same as in the preceding situations. When a process
attempts to exceed its CPS limit (for example, by a CPSLOAD),
it is stopped. If the PM restarts it without increasing its CPS
limit, the operation fails with an error return. In this case (as
in the case of the processor mask) the process is given a
chance to make do with less, i.e., with fewer pages allocated to
it than it might find desirable.

Lastly, we return to the issue of critical sections. The
kernel provides an operation, RUNTIME(time,pages), that solves
this problem. A process invoking RUNTIME is guaranteed not
to stop for "time" time-units (and runs at high priority during
that period). In order to guarantee that it will not be stopped
for exceeding its CPS limit (or in case its PM is over its page
guarantee), "pages" page frames are allocated to it. Of course,
this might cause havoc if the PM had no control over the
execution of RUNTIMEs. It does. Unless "time" remains in the

processes current time quantum an_.d the CPS limit is greater
than or equal to pages, the process is stopped. As with the
previous example, if the PM restarts the process without
changing these parameters, RUNTIME returns with an error.

5. Summary

We have discussed the reasons in favor of conscious
separation of mechanism and policy and have examined some
important places in Hydra where the separation is apparent.
We have tried to show that, although not all policies are
possible, Hydra's kernel mechanisms allow considerable
f lexibi l i ty at the user level in the choice of resource control
policies. The particular set of mechanisms we have
implemented is not the best possible; several known
shortcomings have been identified and discussed. It is our
hope that by consciously applying the policy/mechanism
principle in the design of new kernel facilities, we will
eventually acquire the insight to determine a successful,
minimal set.

6. References

Be166

BS71

CJ75

Den68

Den70

JoW74

Lain73

Par72b

Wu174a

WLP75

Belady, L A., "A Study of Replacement Algorithms for
Virtual Storage Computers", IB M Systems Journal 5, 2
(1966).

Bernstein, A. and Sharp, J., "A Policy-Driven Scheduler
for a Time-Sharing System", Communications of the
ACM t4, 2 (Feb. 1971).

Cohen, E. and Jefferson, D., "Protection in the Hydra
Operating System", Proceedings of the 5th Symposium
on Operating System Principles, Austin, Texas, Nov.
1975.

Denning, P. J., "The Working Set Model for Program
Behavior", Communications of the ACM 11, 5 (May
1968).

Denning, P. J., "Virtual Memory", Computing Surveys 2,
3 (Sept. 1970).

Jones, A. K., and Wulf, W. A., "Towards the Design of
Secure Systems", International Workshop on Protection
in Operating Systems,]RIA, 1974.

Lampson, B., "A Note on the Confinement Problem",
Communications of the ACM 16, 10 (October 1973).

Parnas, D., "On the Criteria to be Used in Decomposing
Systems into Modules", Communications of the ACM 15,
12 (December 1972).

Wulf, W., et al., "HYDRA: The Kernel of a
Multiprocessor Operating System", Communications of
the ACM 17, 6 (1974).

Wulf, W., Levin, R., Pierson, C., "An Overview of the
HYDRA Operating System Development", Proceedings
of the 5th Symposium on Operating System Principles,
Austin, Texas, Nov. 1975.

140

