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Abstract 

The extent to which resource allocation policies are 
entrusted to user-level software determines in large part the 
degree of flexibil ity present in an operating system. In Hydra 
the determination to separate mechanism and policy is 
established as a basic design principle and is implemented by 
the construction of a kernel composed (almost) entirely of 
mechanisms. This paper presents three such mechanisms 
(scheduling, paging, protection) and examines how external 
policies which manipulate them may be constructed. |t is 
shown that the policy decisions which remain embedded in the 
kernel exist for the sole purpose of arbitrating conflicting 
requests for physical resources, and then only to the extent of 
guaranteeing fairness. 
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1. Introduction 

An important goal of the Hydra system is to enable the 
construction of operating system facilities as .normal user 
programs [WLP75]. Most such facilities provide some form of 
virtual resource (e.g. a file, a communication channel) and 
require base system resources (processor cycles, memory, 
input/output) for their implementation. We must therefore 
allow user-level control of the policies which determine the 
util ization of these resources. These policies are a major 
dimension of operating system variability. As many of us know 
from bitter experience, the policies provided in extant 
operating systems, which are claimed to work well and behave 
fair ly "on the average', often fail to do so in the special cases 
important to us. By allowing these policies to be defined by 
user-level (i.e. non-privileged) programs, we make them more 
amenable to adaptation and tuning than they might be if buried 
deep in the system's kernel. Moreover, to permit each 
application to tune the system to its own needs, we wish to 
allow multiple policies governing the same resource to exist 
simultaneously, where appropriate. 

At this point, practicality intrudes; in fact, it intrudes in 
several ways. First, we must assume that any user-level 
program contains bugs and may even be malevolent. We 
therefore cannot allow any single user or application to 
"commandeer" the system to the detriment of others. By 

implication, we must prevent programs which define policies 
direct access to hardware or data which could be (mis)used to 
destroy another program. That is~ such programs must 
execute in a protected environment. L Further, we must not 
permit such a program to monopolize any resource, whether it 
does so intentionally or not. We must assure some "fairness" 
among competing policies~ In addition, we must recognize that 
many policy decisions must be made rapidly (e.g. fast 
scheduling decisions are essential in order to achieve 
reasonable response). Given that user-level policy programs 
must execute in their own protection domains, and that domain 
switching is costly on C.mmp, it is impractical to invoke such 
programs each time a policy decision is required. 

Thus, we compromise. We give this compromise a name: 
the principle of poUcy/rnechanisnt seperation. Policies are (by 
definition) encoded in user-level software which is external to, 
but communicates with, the kernel. Mechanisms are provided 
in the kernel to implement these policies. In this context we 
use the phrase "kernel mechanisms" to mean two distinct but 
related things. 

In the first instance we mean simply a "safe" (protected) 
image of a hardware operation. Thus, for example, we never 
allow a C.mmp user to manipulate i/o device control registers 
directly. To do so would allow that user, possibly 
inadvertently, to overwrite an arbitrary portion of memory. 
We do, on the other hand, provide a mechanism, a kernel 
operation, whose only effect is to manipulate such device 
control registers after appropriate validation. 3 Mechanisms 
such as this exist purely to insulate the system and other 
users from a misbehaving policy program. 

In the second instance a kernel mechanism may actually 
be a parameterized policy. Parameterized policies provide the 
means by which overall, long-term policies can be enforced by 
user-level software, and at the same time avoid a ponderous 
domain-switching mechanism for decisions which must be made 
rapidly. The existence of such kernel mechanisms seems to 
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2. Obviously, all programs must be denied such liberties, but 
policy-making programs frequently require access to 
information which might normally be considered privileged. 

3. To perform such an operation the user must have a 
capability for the device object with the appropriate rights 
[CJ75]. 



contradict the earlier assertion that policies are strictly user- 
level pieces of software; hence, we will first attempt to defend 
the appropriateness of parameterized policies in the kernel. 

The kernel cannot possibly support all conceivable user- 
defined policies, since some will violate fairness guarantees or 
protection requirements. At best it can provide a mechanism 
adequate to implement a large class of desirable resource 
allocation policies. The decision to exclude certain policies is 
itself a lower-level (i.e. kernel) policy of a sort, but we intend 

i t  in a practical sense to be a non-limiting restriction which 
disallows only "undesirable" policies. Nonetheless, it is still 
possible that the precise nature of a particular kernel 
mechanism discriminates against certain acceptable policies, 
making them intolerably difficult or expensive to implement. In 
such cases we have obviously failed to attain the desired goal. 
The class of implementable policies is clearly determined by 
the type and number of parameters provided by the kernel 
mechanisms, and the extent of that class is therefore 
dependent upon the designer's insight. 

The identification of a piece of software as "policy" or 
"mechanism" is a relative one. The implementor of a (virtual) 
resource establishes policies for the use of that resource; such 
policies are implemented with mechanisms provided by 
external software. Thus a hierarchy exists (under the relation 
"is implemented using") in which higher-level software views 
higher-level facilities as mechanisms. At the base of this 
hierarchy rest the kernel mechanisms, several of which we 
consider below. Thus, in principle, the kernel contains only 
those facilities which we feel could not profitably be 
implemented using lower-level mechanisms. 4 These lowest- 
level software mechanisms are themselves in fact policies for 
user of the hardware resources. 

The remaining sections of this paper discuss three 
important examples of policy/mechanism separation in Hydra. 
The examples are representative of the applications of this 
principle but do not exhaust the situations in which it is 
relevant. In the sequel the discussion frequently refers to 
basic Hydra concepts, e.g. the particular notions of capability 
and object that Hydra defines. Familiarity with these notions is 
assumed; an adequate understanding can be acquired from 
[WLP75,Wu174a]. 

2. KMPS 

KMPS (the Kernel Multiprocessing System) is that portion 
of the kernel which implements a mechanism to support 
policies for scheduling user processes. Parameterized 
schedulers are not a new idea [BS7I], but the intent in Hydra 
differs somewhat from most other systems in which this 
concept is employed. Our goals with respect to this mechanism 
were:  (1) to permit a process scheduler to run as a user level 
process, and (2) to allow multiple schedulers to run 
concurrently. We call a user-level scheduler a Poli.cy Mod=le 
(PM). 

4. In practice, we include a few facilities in the kernel which 
are logically non-primitive, but which, for efficiency reasons, 
require more direct access to the hardware. Alternative 
hardware architectures would permit exclusion of these 
mechanisms from the kernel. 

Each process has an associated PM that is responsible 
for making the scheduling decisions related to that process; 
typically a single PM will be responsible for scheduling several 
user processes. Thus at some point in time, one PM might be 
controlling normal "time sharing" user processes. A second PM 
may simultaneously be scheduling background "batch" tasks. A 
third PM might have special knowledge of the manner in which 
its processes are cooperating and use this information to 
effect a more efficient use of machine resources than 
otherwise would be possible. Lastly, we may have a fourth PM 
being debugged. KMPS guarantees that an error in one PM 
can have no deleterious effect on the remaining PMs. 

The KMPS mechanism is in fact a parameterized policy, 
for two reasons. First, scheduling decisions must be made 
rapidly; we cannot afford to invoke the overhead involved with 
switching protection domains (i.e. a Procedure call) each time a 
scheduling decision must be made. Second, KMPS serves as a 
focal point at which it is possible to adjudicate the competing 
demands of distinct PMs. Since KMPS bases its short-term 
scheduling decisions on the parameters set by the PMs, it 
provides the mechanism by which short-term scheduling policy 
can be made by the PM. Since any short-term policy must be 
implemented by use of this mechanism, not all scheduling 
policies are possible or practical; however, we believe the 
mechanism provided is general enough to permit a large 
number of interesting ones. 

Before proceeding with the details, we present a 
general description of the interaction between a process, the 
PM which controls it, and KMPS: 

A process is an object. The PM which is 
responsible for the process must have a 
capability for it with appropriate rights. 
Assuming that the PM has such a capability, it 
may perform certain kernel-defined operations. 
For example, it may set the parameters which 
will control the short-term behavior of KMPS 
with respect to that process and may also 
"start" the process, that is, allow KMPS to 
schedule it. 

The act of starting a process yields control of it 
(temporarily) to KMPS. When a process is 
started, its pages will be brought into core (by 
the paging mechanism to be discussed in 
section 3), and will remain in core until the 
process "stops" (i.e. leaves KMPS). As soon as 
the process is present in core, KMPS will begin 
scheduling the process for execution, and the 
process will then compete for pi'ocessor cycles 
with all other processes which have been 
started by some PM. As noted previously, the 
behavior of KMPS with respect to the process 
is determined by the parameters set by the PM. 

Under any of several conditions the process 
may be "stopped" (removed from KMP$); we 
shall mention some of these conditions later. 
For the moment the important property is that 
when a process is stopped, KMPS, returns 
control of it to the PM, and the core it occupies 
is freed. KMPS always sends notification of the 
fact that a process has been stopped back to 
its controlling PM. The PM then has the option 
of restarting the process immediately or waiting 
some period before doing so. The PM may also 
alter the process's scheduling parameters at 
this time. 
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Thus, if we look at the execution history of a single 
process, we would see periods during which the process is idle 
(stopped) and under exclusive control of the Plvl, and other 
periods during which it is being actively multiplexed onto the 
processor resources by KMPS. Closer examination of the 
various active periods might show quite different behavior if 
its scheduling parameters were set differently each time it was 
started. 

2.1 Scheduling Mechanism 

Viewed externally, KMPS defines two types of objects: 
objects of type process and objects of type poEcy. A process 
object corresponds to the usual informal notion of a process; 
that is, it is an entity which may be scheduled for independent 
execution. The data part of a process object, called the 
Process Context Block (PCB), holds state information (e.g. 
scheduling parameters). The C-list of a process object holds 
capabilities corresponding to a stack of LN$ (Local Name 
Space, see [Wu174a]) objects. The 'top' LN$ in this stack 
defines the current 'protection domain' of the process. Each 
LNS is a dynamic incarnation of a PROCEDURE. Both LNS and 
PROCEDURE (as well as PROCESS and POLICY objects) are 
object types predefined and supported by the Hydra kernel. 

A policy object is the kernel's image of a PM; 
furthermore, since each process object points to precisely one 
policy object, the kernel knows which PM to inform when a 
process is stopped. Actually, a policy object is no_j. a PM; 
rather, if is a 'mailbox' to which the kernel sends 'messages' to 
inform a PM that one of its processes has been stopped. We 
shall see the significance of the distinction between PMs and 
policy objects in a moment. 

KMPS defines a number of operations 5 on process 
objects: 

START(process): START of a process causes 
KMPS to enter the process into its scheduling 
queues. KMPS will then select the process to 
run based on its parameters as set by its PM. 

STOP(process): STOP will cause the specified 
process to be stopped (if it is running) and 
removed from the KMP$ scheduling queues; 
notification that the process has been stopped 
is returned to the PM through the mechanism 
described below. 

SETPCB(process,data): SETPCB allows the PM to 
set those fields in the PCB (process context 
block) which control KMPS scheduling decisions. 

GETPCB(buffer,process): GETPCB allows the PM 
to retrieve information from the PCB. 
Specifically, certain useful process state 
information (e.g. elapsed runtime) may be 
determined in this way. 

5. For clarity, we omit discussion of the rights requirements 
imposed on the parameters to these operations. It shoutd be 
obvious that appropriate rights are necessary to control 
application of these operations to processes. In addition, 
descriptions of the operations presented here are somewhat 
simplified. 

KMPS also defines a number of operations on objects of 
type POLICY; the following are simplified versions of two of 
these operations: 

SETPOLiCY(process,policyobj): This operation 
associates the .given policy-object with the 
process. 

RCVPOLICY(buffer,policyobj): This operation 
performs a 'receive' from the mailbox of 
messages in the policy-object concerning 
processes under this PM's control, if the 
mailbox is empty, the process executing the 
RCVPOLICY operation is blocked until a message 
arrives. When a message is eventually 
received, it is stored into the specified buffer in 
the process's core. This information identifies a 
particular process (under the PM's control) and 
indicates why KMPS felt a policy decision was 
required on the process's behalf. 

Earlier we skirted the issue of exactly what a policy 
module is. It should now be clear that a PM is nothing more 
than a process which possesses a capability for a policy object 
(with appropriate rights). In addition, a PM holds capabilities 
for the processes under its control, again with rights adequate 
to perform the above operations, in fact, we can establish an 
operational definition of a PM as a set of programs 
(procedures and processes) which possess such adequately 
endowed capabilities for some collection of processes and a 
policy object. Notice that, with this scheme, what is logically a 
single PM may be in fact implemented as a number of 
processes. For example, several processes may be waiting on 
the mailbox of the same policy object, in effect acting as 
multiple servers, and cooperating to effect a single scheduling 
policy. This 'multiple server' ability may be essential to 
smooth response in a busy interactive environment. 

2.2 The Parameterized KMPS Policy 

The scheduling policy parameters of a process as set by 
its PM include priority, processor mask, time quantum, and 
maximum current pageset (CPS) size (see section 3). KMPS 
uses a priori ty scheduling algorithm; thus a process will run 
before another process scheduled by the same PM at a lower 
priori ty. 

The processor mask of a process specifies which 
processors in the system are permitted to run the process. 
The mask is necessary since not all processors in C.mmp are 
identical; for example, only certain processors have floating 
point hardware. Thus a process exploiting the additional 
hardware will want to restrict its scheduling to the appropriate 
processors. 

The time quantum specifies the amount of execution time 
a process is to receive before it is to be stopped. The time 
quantum is broken up into time slices (0.5 seconds maximum) 
and number of time slices, both of which are specified by the 
PM. At the end of a process's time slice, KMPS may elect to 
run another process. After the specified number of time 
slices, i.e. at the end of the time quantum, the process is 
stopped and returned to the PM via the policy object mailbox. 
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A process may stop for other reasons, e.g. blocking on a 
semaphore or returning from its base LNS (process 
termination). In these cases, as when the time quantum ends 
or an explicit STOP occurs, KMPS ceases execution of the 
process and places an entry in the appropriate policy object 
mailbox. Thus the PM is informed when processes stop (or, as 
in the case of semaphores, can be restarted) for non-PM- 
induced reasons. Let us consider the case of semaphores in 
more detail. 

When a process blocks on a semaphore, KMP$ stops it 
as previously described. However, the fact that the process is 
blocked is not lost, and when the process is subsequently 
unblocked (by a V of the semaphore by another process), 
KMPS again places an entry in the policy object mailbox. This 
second entry is simply a notification that the mechanism of 
unblocking has occurred; the policy of rescheduling the 
infeasible process for execution is still the responsibility of the 
PM. Until a subsequent START operation is performed, the 
process will not be rescheduled. Thus KMPS only implements 
(and enforces) the blocking and unblocking mechanisms, leaving 
scheduling policy to the PM. 

There are a number of additional policy/mechanism 
separation issues relating to parameterized policies. We will 
deal with them at length in the section on Control Protection. 

2.3 Multiple Policy Modules 

At the beginning of this section we stated two goals: (1) 
to permit user-level control of the scheduling policy, and (2) to 
support multiple scheduling policies simultaneously. The 
preceding discussion has focused on the first goal; we now 
turn our attention to the second. 

The desire to allow multiple PMs (controlling disjoint 
sets of processes) is a natural one. We would like to assign 
some fraction of the processing resources to each PM, and 
guarantee that the individual PkAs stay within their allocated 
limits. This puts KMPS in the position of enforcing a fixed 
policy for CPU usage, a policy that has very little dynamic 
variabil ity. Clearly, then, the kernel is not devoid of policy, 
yet the policy/mechanism distinction does not break down; 
where policy is clearly embedded in the kernel, it is there for 
the sole purpose of assuring fairness to (competing) user-level 
policies. As we shall see, KMPS in its role of PM-adjudicator is 
not trying to optimize short- or long-term CPU utilization, but 
is only assuring each PM that it may use an agreed-upon 
fraction of CPU resources. 

We will not discuss the details of the guarantee 
algorithm, since it has not been implemented (though some 
simulations have been performed). In general terms, however, 
the algorithm allocates to each PM a "rate guarantee". That is, 
the PM can expect to receive, upon request, a fixed 
percentage of the CPU cycles deliverable over a given time 
interval. This is a guaranteed minimum; available excess cycles 
will be made available to each PM. We refine this guarantee 
somewhat to account for the heterogeneous nature of the 
processors by partitioning the CPUs into classes and providing 
each PM a rate guarantee within each class. By "guarantee" in 
this context, we mean that the PM will, with high probability, 
receive on demand its allocated fraction of the resources. 

To illustrate that the policies which the kernel is 
obligated to implement are introduced to enforce fairness 
criteria alone, we list the goals of the scheduling guarantee 
algorithm: 

(1) Each PM should receive a guaranteed 
percentage of the CPU time available within 
each processor class. 

(2) If a PM does not consume its guarantee 
during any interval, the excess should be 
distributed fairly among other PMs. 

(3) if a PM fails to receive its guarantee during 
an interval, an attempt should be made to 
give it slightly more than its guarantee in 
succeeding interval(s). 

(4) A process's priority should only affect its 
scheduling with respect to other processes 
of the same PM. 

(5) When a process of a given PM is selected to 
run on a processor, it is generally the 
highest priority process started by that PM 
that can run on the available processor. 
Processes assigned the same priority level 
by a PM are scheduled in a round-robin 
manner. 

3. Paging 

This section examines the policy/mechanism issue in the 
context of paging operations. As with KMP$, the mechanism is 
in fact a parameterized policy in the kernel; but as we shall 
see, control over paging is more indirect than control over 
scheduling. Before proceeding to the issue of policy, however, 
we must first examine the user-visible properties of the 
paging mechanism. These properties are, unfortunately, 
strongly affected by the hardware architecture of C.mmp. 

The single largest impact results from the PDP-11 
processor; specifically from the fact that it is able to generate 
only a 16-bit address. Thus user programs at any instant may 
address at most 64K bytes, or 32K words. The second largest 
impact arises from the fact that the relocation hardware 
divides the user's address space into eight 8K-byte units 
called page ,frames. Since this is a rather small address space, 
much of the design of the paging system is oriented toward 
making these restrictions somewhat more comfortable. A third 
impact of the hardware architecture is that the relocation 
hardware is incapable of supporting demand paging (in the 
conventional sense of that term). A single -PDP-11 instruction 
may access as many as six distinct pages and may have side 
effects on the processor registers between some of these 
accesses. The C.mmp relocation hardware does not retain 
sufficient processor state to allow these side effects to be 
undone if a fault occurs. As a result, Hydra must insure that 
pages referenced by the relocation hardware are actually 
present in primary memory. 

In the following material we shall usually use the term 
page to refer to an object, in the Hydra-technical sense of that 
word, of type PAGE. in some contexts the term page may also 
mean the information contained in the PAGE object. The term 
page frame, or simply frame, will usually be used to refer to 
the area of physical primary memory (core) in which the 
information content of a page object resides. The term 'frame 
is also used to indicate a portion (1/8th) of the user's address 
space. Context should disambiguate these uses. 
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3.1 Paging Mechanism 

Since pages are objects, a user program may, and 
generally will, have one or more capabilities which reference 
specific pages. These capabilities may be in an executing LNS 
or contained in some object, which can be named by a path 
rooted in the LNS. Possession of a capability for a page, 
however, does not make it addressable. In particular, it is 
possible that many more pages may be named through some 
particular LNS than can be simultaneously addressed by the 
C.mmp hardware. Thus the paging system defines means by 
which the user may specify and alter the set of page objects 
which are physically present in primary memory and which 
may be directly accessed at some instant. 

Each active LNS has associated with it a CPS (current 
page set) and an RPS (re~ocat/.on page set). The sat of pages 
referenced by the CPS is guaranteed to be in core while the 
LNS is executing. The set of pages in the RPS (a subset of 
those in the CPS) is precisely the set of page frames which 
are currently named by the relocation hardware of C.mmp. 
Thus the pages in the RPS are those whose information may 
be accessed directly by instructions executed by the user's 
program. Of necessity the RPS must refer to eight or fewer 
pages. No such size restriction exists for the CPS. 

The LNS, CPS, and RPS effectively define a three-level 
memory system -- those pages nameable by, or through, the 
LNS, those named in the CPS, and those named in the RPS. 
Normally each of these is a subset of the preceding (the 

except ion being that once a page is loaded into the CPS it may 
be deleted from the LNS). Each of the sets also implies more 
rapid access than its predecessors. The pages in the RPS are 
both in core and addressable, those in the CPS are in core but 
not addressable, and those in the LNS may not even be in core. 

For small programs the three sets may be identical, and 
the user need not concern himself with paging. For larger 
programs, larger than 32K words, the user is required to 
manage these sets; the way in which the user does this may 
significantly affect the performance of the program. Several 
kernel operations are provided to manage these page sets; 
slightly simplified versions of two of these follow: 

CPSLOAD(Cpsslot,Page) causes a capability for a 
page object to be loaded into the specified slot 
of the current CPS. There are two side effects 
of this action. First, any previous capability in 
this CPS slot is implicitly deleted; the page 
object named by the deleted capability is no 
longer required to be in core by the current 
LNS, hence it may be eligible to be swapped 
out. Second, the page named by the capability 
just placed ihto the CPS may now have to be 
brought into core; that is, it may have to be 
swapped in. 

RRLOAD(Rpsslot,Cpsslot) causes appropriate 
information to be placed into the hardware 
relocation register associated with 'Rpsslot' so 
that the page referenced by the capability in 
the specified slot of the CPS may be directly 
addressed. Of course the information 
previously contained in this relocation register 
is removed at the same time; however, this 
page remains in the CPS and hence is still 
resident in core. 

Several additional points need to be made before we 
deal with the policy/mechanism issues. First, notice that a 
page is conceptually in core as soon as a user moves a 
capability for a page object into the CPS. [n practice the page 
need not be physically present until it is moved into the RPS. 
It is therefore reasonable to allocate a page frame as soon as 
a CPSLOAD is performed, and to initiate an i/o transfer if 
necessary, but not to suspend the program unless an RRLOAD 
is performed before the transfer is complete. 

Second, only the "top" CP$ of each process, that is the 
CPS associated with its current LNS, needs to be core- 
resident. 

Third, each procedure object contains information about 
the initial CPS/RPS configuration to be associated with an LN$. 
This information is given in the form of a set of pairs of 
indices; these pairs invoke implicit CPSLOAD and RRLOAD 
operations when a procedure is called. Thus whenever a 
procedure is called, it begins executing in an environment in 
which a specified set of pages are in core and addressable. 
This initialization is performed after the LNS has been 
incarnated; thus page objects passed as actual parameters may 
be part of the initial environment. 

Fourth, the kernel mechanism which provides facilities to 
control paging policy is subject to several constraints --  
including the physical memory size. The most important 
constraint, however, is imposed by the assumption made by 
KMPS that the RP$ for every feasible process is in core. Note 
that as in all allocation systems, allocation decisions for distinct 
resources are not independent. Even if it were feasible to 
completely decouple, for example, paging and scheduling 
decisions, it would probably be unwise to do so. The 
particular coupling described below is possibly too strong, but 
it is the only formulation we have as yet found to be practical 
to implement. 

3.2 Paging Policy 

There are three issues of paging policy that we have 
had to face in designing the Hydra kernel: process paging, 
guarantees, and replacement. We will present each briefly and 
then discuss them in more detail. 

All pages in the top CPS of each process in KMP$ must 
have a page frame allocated in core. Two alternatives present 
themselves. Either the PM directly handles the paging for each 
process under its control or as much of the mechanism as 
possible (and hence, some of the policy) is left to the kernel. 
We have chosen the latter alternative, tightly coupling the 
mechanisms for paging and scheduling. 

Multiple PMs may be competing for limited memory in 
which to run their processes. We will describe a mechanism 
that allocates a guaranteed number of pages to each PM in 
order to assure fairness. 

Whenever pages are placed in core, other pages may 
have to be displaced. Thus, there is a need for a page 
replacement policy. One might assume that each PM could 
manage its own guaranteed set of pages. The kernel would 
only need to provide a mechanism that would allow a PM to 
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designate which page among its guaranteed set could be 
replaced. 6 For various reasons, that assumption is inadequate 
and a more sophisticated mechanism (one which includes quite 
a bit of policy) has been provided instead. 

3.2.1 Process Paging 

We have decided to let the kernel handle process paging 
essentially automatically. There are three situations in which 
this automatic paging is done: 

(1) 

(2) 

(3) 

Whenever a PM "starts" a process, i.e. gives 
control of it to KMPS, the paging mechanism 
will cause the pages in the "top" CP$ to be 
brought into primary memory. 

Whenever a process "stops", i.e. KMPS yields 
control of the process back to the PM, the 
pages of the "top" CP$ are made eligible to 
be transferred out of primary memory 
(except, of course, for any shared pages 
which are referenced by the "top" CPS of 
some other runnable process). 

Whenever the top CP$ of a process changes 
(i.e. via call or return of an LN$) the pages in 
the new CPS are automatically brought into 
core and those in the old CP$ are made 
eligible to be transferred out of primary 
memory (except, as above, for shared pages). 

Obviously many paging policy decisions are implicit in 
the PM's actions in starting or stopping processes. By 
Choosing which processes will run at any instant, the PM is 
also choosing the pages to be core-resident. This is no~t 
however, adequate control. An individual process may alter 
the size of its CP$, and hence its memory requirement. It may 
do this directly, by CPSLOAD's, or indirectly by calling (or 
returning from) LNSs with different, possibly radically 
different, storage requirements. Thus, unless more control 
were provided, it would be possible for wild fluctuations to 
occur in the storage requirements of a collection of processes 
unbeknownst to the PM controlling that collection. 

One could, of course, have the kernel mechanism stop a 
process and send a message to the PM each time a paging 
decision must be made, i.e. each time the process invokes 
CPSLOAD or changes its LN$. Just as with KMPS, we choose 
not to do this, but to have the PM yield control over "local", or 
"short term" paging decisions to the kernel. As with KMP$ we 
also parameterize the kernel paging policy and allow the PM to 
set these parameters --  thus influencing the short term policy. 

In the case of paging there is at present only one (per 
process) parameter. The PM may specify, for each process 
under its control, the maximum CPS size for that process. 
Thus, in effect, the PM may place a limit on the number of 
page frames a process may use at any instant. Only if a 
process, as the result of either CP$LOADs, calls or returns, 
exceeds this limit, is the process automatically stopped. At 
such points, the PM may intercede and decide to allow the 
process to proceed (by altering the CP$ limit) or allow the 
process to remain stopped until the requisite memory 

6. The kernel would of course have to check that the page did 
not belong to the top CPS of any process associated with that 
PM. 

resources are available. The point, of course, is that as long 
as a process operates within specified resource limits there is 
no need for the PM to interfere (or to evoke the overhead 
associated with doing so). 

3.2.2 Paging Guarantees 

Each PM is guaranteed a specified number of page 
frames. The s~Jm of these guarantees across all PMs is equal 
to the number of available page frames. Thus. the guarantee 
acts as a limit as well, for the sum of the CPS limits for the 
processes under the control of a particular PM and which are 
runnable (in the sense of being under the control of KMPS) is 
constrained not to exceed the guarantee. Thus, each PM can, 
and should, attempt to control the processes for which it is 
responsible in a way which effectively utilizes the memory 
guaranteed to it. 

Unfortunately, this paging guarantee is too strong, since 
it restricts resource allocation rather than merely insuring it, 
and thereby leads to inefficient use of primary memory. For 
example, a PM has no easy way to know to what extent the 
processes it controls share pages. Hence the number of 
frames used by a collection of processes may be less than the 
sum of their CPS limits and the PM may not know it. Under 
such circumstances the PM will use the memory resource less 
effectively than it might. This problem might be resolved fairly 
easily for pages shared between processes controlled by the 
same PM, but it is difficult to see how to resolve for pages 
shared between processes controlled by distinct PMs. 

A possible solution to this problem allows a PM to 
exceed its guarantee as long as page frames are available. 
Availabil ity may be due not only to sharing of pages by 
processes within or across PMs, but may be due to under- 
util ization of page frames by another PM. 

This solution is not without difficulties. The extra page 
frames may suddenly become unavailable, if, for example, a PM 
under guarantee wishes to utilize its entire guarantee. In that 
case, we must embed another bit of policy in the kernel to 
determine how those extra pages are to be reclaimed from 
PMs over guarantee. An obvious example solution involves 
stopping the lowest priority process of the PM most over 
guarantee and continuing doing this until the requisite number 
of pages become available. 7 Other factors that might affect the 
policy include the number of non-shared pages used by the 
process and the length of time it has been in KMPS. We have 
not yet determined the best criteria for this kernel paging 
policy. 

3.2.3 Page Replacement 

Whenever a new page is made core-resident, it is 
necessary to choose a frame to hold it. This choice is called a 
replo.cern.ent policy because it (potentially) implies replacing a 
page which is already in core. This choice can significantly 
affect system performance. One hopes that if the policy is 
clever, frequently used pages will not be replaced and hence 
will not have to be reloaded into primary memory. 

7. Remember that when a process stops, all pages in its top 
CPS (except those shared with runnable processes) become 
eligible to be transferred out of primary memory. 
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There are two factors that make page replacement more 
complex than originally suggested in the introduction to this 
section~ 

(1) As long as a process does not exceed its CPS 
limit, it need not be stopped and may load 
and unload pages from its CPS without its 
PM's knowledge. Thus the PM does not know 
exactly which of its pages are actually in 
core. 

(2) Sharing of pages, especially by processes 
under the control of different PM"s makes it 
difficult for a PM to know when a page is 
really eligible to be swapped out. 

Even if the information needed could be made available 
to a PM, it might not be valid when used, since it can change 
quite dynamically. The difficulties associated with (1) are a 
direct result of our decision to let the kernel handle "short- 
term" paging decisions. But, the difficulties associated with (2) 
are independent of the amount of direct control a PM has over 
the paging of its processes. It appears to us that unless the 
kernel is the ultimate arbiter of replacement, memory will be 
under-uti l ized in the case of sharing of the degree we expect 
in Hydra. 

The yielding of replacement policy to the kernel has 
another benefit, one associated with protection. We neither 
require nor expect that PMs will be correct or even 
trustworthy. Therefore, it is important that a PM be able to 
gain as little information as possible about processes under its 
control. Paging mechanisms different from the one adopted for 
Hydra have the disadvantage that far more information 
regarding the paging behavior of a process (perhaps even 
including the identity of individual pages) would be made 
available to a PM. This would provide an additional covert 
channel for leaking sensitive information [Lam73,CJ75]. 

A substantial body of literature exists on the behavior 
of various replacement algorithms [e.g. Den68pBe166,Den70]. 
Two properties of the current context suggest an algorithm 
slightly different from the usual ones. First, the CPS is, in 
effect, the "working set" of a process. These are guaranteed 
to be core-resident The replacement algorithm chooses only 
among the frames occupied by pages not present in the CP$ of 
any processes which can be scheduled by KMPS. Second, the 
kernel is able to keep track of information about how various 
pages are used --  it can determine, for example, whether the 
page belongs to the "top" CPS of a "stopped" process, the nth 
CPS (from the top of a CPS stack) of a running process, 
whether it is not in any CPS, etc. Thus the kernel can make a 
reasonable guess at the likelihood that a page will be needed 
again in the near future. 

Whenever a page becomes eligible to be swapped out, 
the first thing done is to make sure that a valid copy of the 
page exists in secondary memory. The "dirty bit" in the 
hardware relocation registers is examined to determine 
whether the page has been modified since it was last written 
out~ if the dirty bit is set, the page is copied to secondary 
memory and the bit reset. As soon as it is certain that a valid 
copy of the page exists, its frame is made eligible for 
replacement. 

The scheme for replacement is to assign a "priority" to 
each replaceable page and to replace the pages in reverse- 
pr ior i ty order. Pages of the same priority are replaced on a 
least-recently-used basis. The priority of a replaceable page, 
P, is defined as 

Priority(P) = ~ C(r) 
r(Ref(P) 

where 'Ref(P)' is the set of references (in some CPS) to P and 
'C(r)' is a cost-function. The value of C(r) depends upon the 
nature of the reference (from a stopped process, second 
position of the CPS stack of a runnable process (one in KMPS), 
etc.). If the page again becomes part of the top CPS of a 
process in KkAPS before it has been replaced, a transfer from 
secondary memory is avoided. The nature of C has not yet 
completely been fixed 8 and will depend upon additional 
experience and simulation. 

At present, a PM has no way to specify information it 
may have concerning page utilization to the kernel mechanism. 
A PM may know that a process may not be stopped for long. 
In that case, it would be desirable that pages referenced from 
that process's CPS have a higher cost value. One might even 
imagine extending the mechanism so that, if a PM had a way to 
increase the priority of a process's pages prior to starting it, 
the kernel mechanism would try to insure, by prepaging if 
necessary, that the process's pages will be in core. One might 
also have to provide a way for a PM to designate a certain 
number of its guaranteed page slots be reserved for such 
highly valued pages even though they are not actually in use 
by runnable processes. 

A user program also may have information relevant to 
the paging mechanism. For example, an LNS which constantly 
moves pages in and out of its CPS may want to identify certain 
"important" pages. Such pages, though not in the CPS, should 
be retained in core if possible and at the expense of other 
pages not present in the CPS. In terms of the current 
formulation of the paging mechanism, the LNS wants to 
influence the priority calculation for its "important" pages. At 
present, there is no way to accomplish this weighting of the 
page priority, although, as with weighting desired by the PM 
described above, it could probably be accommodated without 
much difficulty. 

3.2.4 The Effect of the Hardware 

The hardware architecture has had a major impact on 
the form of the mechanism for paging presented to the user. 
The inadequacy of the information retained in case of a fault 
combined with a limited address space prevents demand paging 
and forces the user to explicitly define a working set (CPS). 
Yet while these design "features" have had profound effects 
on the mechanism, they are actually quite independent of the 
policy/mechanism separation issues discussed above. 

If hardware permitted an extremely fast context swap, 
PMs could exercise much tighter control over process paging. 
Each time a process reduced or increased the size of its CPS, 
the PM could be invoked, thereby removing short-term paging 
decisions from the kernel. (To an extent, this applies to 
scheduling decisions as well.) 

8. At present C(r) is 2 if r is referenced in the top CPS of a 
runnable process, ! if r is from the next to top CPS of a 
runnable process, and 0 otherwise. 
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However, as with scheduling, the real need for certain 
kernel-centered policies arises from the presence of multiple 
policy modules, no one of which is guaranteed to be correct. 
The problems related to guarantees, sharing and replacement, 
are all induced by multiple PM's and are present no matter 
whether CPSs change implicitly or explicitly. 

4. Protection 

In contrast to scheduling and paging, the Hydra 
protection structure provides a clear separation of mechanism 
and policy. It is the intent of the design to provide a set of 
facilities which can solve a broad class of protection problems, 
but which a user program need not use if it is not concerned 
with protection. In this regard the kernel protection 
mechanism is a passive one, while scheduling and paging 
demand at least a limited amount of PM action. 

4.1 Access Protection 

Hydra provides a capability-based system which very 
naturally supports selective access to information. The 
particular character of the protection mechanism exhibits some 
aspects of policy, especially in the sense that certain kinds of 
protection structures can be constructed more naturally than 
others. For example, that type of protection best known as 
information hiding [Par72b] is available directly in Hydra 
through the construction of sul?systems built around extendible 
types [WLP75]. Only indirectly (though quite naturally) 
through the construction of subsystems can users build other 
protection structures, for example, access control lists or 
military security classification systems [JoW74]. At the same 
time, this structure provides an elegant framework for 
mechanisms which permit the solution of a number of important 
protection problems, including confinement and selective 
revocation [CJ75]. 

In general, the kernel does not force a user to share 
information with or execute code supplied by another user. 
Where cooperation is desirable, the kernel supplies a variety 
of mechanisms that permit users to generate policies that will 
protect them insofar as is possible. These are described in 
[CJ75] and will not be dealt with here. 

4.2 Control Protection 

In one case, the kernel does force interaction. If a user 
program expects to get any work done, it must interact with a 
PM that it may not necessarily trust. 9 Even though a PM does 
have a capability for all processes under its aegis, it in fact 
cannot gain access to any capabilities or data in any LNS or 
CPS associated with the process. In addition, the nature of the 
paging and scheduling mechanisms make little other information 
available to the PM. So, interaction with a PM does not 
provide any significant additional concern over access 
protection. Protection of control is another matter. 

9. It may, of course, demand its own certified PM, but we are 
concerned with less inflexible users. 

A procedure may be called by any program that can 
gain an appropriate capability for the procedure. Thus, an LNS 
(incarnated from an arbitrary procedure) in general has little 
control over the PM under which it is being scheduled. A PM 
that schedules it erratically (or perhaps not at all) may cause 
as much (or more) harm as a failure in access protection. The 
kernel provides a number of mechanisms that support policies 
aimed at protection of control. 

4.2.1 PM Identification 

As an example, consider a spooling subsystem. Through 
the kernel's general message system (which will be described 
in a later paper), a number of processes send output to the 
subsystem. The subsystem is simply an LNS that has 
capabilities that permit it to receive these outputs plus a 
capability that permits it to output to the line printer. This 
LN$ executes in some process which runs under some Pk4. The 
builder of the spooling subsystem is very aware that unless 
the process is scheduled reasonably, it will not be able to 
satisfy its specifications. It requires a trustworthy PM with a 
reasonable collection of paging and scheduling guarantees. 

Associated with each policy object is some data that can 
be altered only by the "system administrator". 10 By 
convention, this data includes information about the 
trustworthiness and reliability of a particular PM, as well as its 
scheduling and paging policies and other services it may 
provide. 11 Any LNS (in particular the spooler) can access all of 
this information for the Rvl under which it is being scheduled, 
and may use the data to decide whether or not it will even try 
to provide its service. Here Hydra provides simply an 
informational mechanism, but one that permits subsystems to 
posit complex policies regarding the conditions under which 
they will attempt to provide service. 

4.2.2 Negotiation with a PM 

A more severe requirement for control protection arises 
in the execution of critical sections. Consider, for example, a 
data base subsystem. Only by calling a procedure supplied by 
this subsystem can users access the data base. Since multiple 
LNSs may be instantiated from this procedure, each in a 
different process, each attempting access, the procedure code 
contains a number of critical sections (which can, but need not, 
be implemented using semaphore objects). Once a process has 
entered a critical section, it is fairly important that it not be 
stopped until the critical section is exited, else other processes 
might be unnecessarily delayed. In the most extreme case, a 
PM may stop a process in the midst of a critical section and 
never restart it. 

To solve this problem, the kernel provides a number of 
mechanisms that allow negotiation to take place between a 
process and its PM and that guarantee the results of the 

10. This is enforced, of course, by appropriate rights to the 
policy ob jec t .  

11. There also exists a mechanism by which a PM can associate 
with each process under its aegis a set of capabilities. Any 
LN$ executing under such a process can obtain any of these 
capabilities. Presumably these capabilities can be exercised to 
share information with the PM that will permit it to schedule or 
page the process more effectively. 
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negotiation. Before presenting our solution to the problem of 
critical sections, we will look at several other instances where 
negotiation mechanisms are useful. 

We noted that processes are stopped whenever they 
are blocked on a semaphore and can be restarted by a PM 
after the process is subsequently unblocked. In fact, the PM 
may restart the process before it has been unblocked. The 
process will be notified of the PM's unusual action by getting 
an error return from the P operation on the semaphore. 
Ordinarily, in the case of mutual exclusion, a process passing a 
P may expect that it has sole access to some resource. By 
allowing a PM to arbitrarily restart the process, this need no 
longer be true. To facilitate debugging and recoverability, we 
might imagine that the PM could establish a non-kernel 
mechanism that could be used to notify a process in the case 
of abnormal restarts. The decision fixing the circumstances 
under which a process is to be restarted could be negotiated 
through that mechanism. However, this is inadequate in the 
case of erroneous or malicious PMs. Instead, the kernel 
guarantees the result of the negotiation by providing an error 
return on abnormal starts. 

A process's processor mask provides another example of 
negotiation. In our earlier discussions of KMPS we noted that 
the mask is set in each process by the PM. In fact, the mask is 
actually determined by the top LNS executing under a process. 
It is necessary that the mask be able to change at least when 
the top LNS of a process changes. Each LNS is an incarnation 
of a distinct PROCEDURE and each may have distinctly different 
processor needs. Accordingly, each LNS has a field containing 
the mask of processors on which it will permit itself to run. 

Each time an operation is performed which would 
necessitate a change in processor mask (e.g. changing LNSs), 
the process is stopped. The stop message sent to the policy 
object mailbox includes the allowable mask. The PM may then 
restart the process after changing the mask to the allowable 
one, or some subset of it. Suppose, however, the requested 
mask is not acceptable to the PM (e.g. too many other 
processes have requested the same special processor). Of 
course, the PM could keep the process suspended until the 
desired special processor became free. The mechanism 
provided, however, is a bit more robust. As in the previous 
example, if the process is restarted with an unacceptable mask, 
the operation which required the change in mask will fail with 
an error return. This again puts the kernel in the role of 
guaranteer of a negotiation. 

CPS limits provide another example of a case in which 
negotiation is desirable, and the kernel mechanism supplied is 
the same as in the preceding situations. When a process 
attempts to exceed its CPS limit (for example, by a CPSLOAD), 
it is stopped. If the PM restarts it without increasing its CPS 
limit, the operation fails with an error return. In this case (as 
in the case of the processor mask) the process is given a 
chance to make do with less, i.e., with fewer pages allocated to 
it than it might find desirable. 

Lastly, we return to the issue of critical sections. The 
kernel provides an operation, RUNTIME(time,pages), that solves 
this problem. A process invoking RUNTIME is guaranteed not 
to stop for "time" time-units (and runs at high priority during 
that period). In order to guarantee that it will not be stopped 
for exceeding its CPS limit (or in case its PM is over its page 
guarantee), "pages" page frames are allocated to it. Of course, 
this might cause havoc if the PM had no control over the 
execution of RUNTIMEs. It does. Unless "time" remains in the 

processes current time quantum an_.d the CPS limit is greater 
than or equal to pages, the process is stopped. As with the 
previous example, if the PM restarts the process without 
changing these parameters, RUNTIME returns with an error. 

5. Summary 

We have discussed the reasons in favor of conscious 
separation of mechanism and policy and have examined some 
important places in Hydra where the separation is apparent. 
We have tried to show that, although not all policies are 
possible, Hydra's kernel mechanisms allow considerable 
f lexibi l i ty at the user level in the choice of resource control 
policies. The particular set of mechanisms we have 
implemented is not the best possible; several known 
shortcomings have been identified and discussed. It is our 
hope that by consciously applying the policy/mechanism 
principle in the design of new kernel facilities, we will 
eventually acquire the insight to determine a successful, 
minimal set. 
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