
Converting a Swap-Based System to do Paging in an 
Architecture Lacking Page-Referenced Bits 

~ z a l p  Babaoglu 

Willim, Joy 

Computer Science Division 
Department of Electrical Engineering and Computer Sciences 

University of California, Berkeley 
Berkeley, California 94720 

Abstract- This p a p e r  discusses the modifications 
made to the UNIX operating system for the VAX- 
11/780 to convert it from a swap-based segmented 
system to a paging-based virtual memory system. Of 
particular interest is that the host machine archi- 
tecture does not include page-referenced bits. We 
discuss considerations in the design of page- 
replacement and load-control policies for such an 
architecture, and outline current work in modeling 
the policies employed by the system. We describe 
our experience with the chosen algorithms b a s e d  on 
benchmark-driven studies and production system use. 
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Except for the machine-dependent sections of 
code, UNIX for the VAX was quite similar to that 
for the PDP-II which has a 16-bit address space and 
no paging hardware. It made no use of the memory- 
management hardware available on the VAX aside from 
simulating the PDP-II segment registers with VAX 
page table entries. The main-memory management 
schemes employed by this first version of the sys- 
tem were identical to their PDP-II counterparts-- 
processes were allocated contiguous blocks of real 
memory on a first-fit basis and were swapped in 
their entirety. A subsequent version of the system 
was capable of loading processes into noncontiguous 
real memory locations, called scatter ~ ,  and 
was able to swap only portions of a process, called 
partial swapping, as deemed necessary by the memory 
contention. This would become the basis for the 
paging system development discussed in this paper. 

G o a l s  

The user-friendliness and portability of the 
UNIX environment were perceived to be large advan- 
tages by our installation. However, application 
progrems outgrew our resources with the original 
swap-based system very quickly. The initial confi- 
guration of the machine had only i/2 megabyte of 
real memory. Although, in the long run more memory 
would be available, it seemed natural to incor- 
porate paging into UNIX and thereby support larger 
applications and make better use of our limited 
main memory. This would also provide a vehicle for 
researching storage hierarchy performance evalua- 
tion and memory-management techniques. 

S e a r c h  f o r  a r e p l m c e a t e n t  p o l i c y  

The VAX memory-management architecture sup- 
ports paging within three segments (two for user 
processes, one for the system). The interesting 
aspect of the architecture is the lack of page- 
referenced bits (also called use bits). Such bits 
typically provide the reference information which 
commonly-implemented page replacement algorithms 
such as ~Wclock1' and Sampled Working Set (SWS) 
[DENN 68a] (to be described in the following sec- 
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tions) base their decisions on. Without even this 
minimal page reference information, the only rea- 
sonable algorithms for replacing pages are the 
First-In-First-Out (FIFO) and the Random (RAND) 
policies, which are known to have performances (as 
measured by the number of page faults generated for 
a given mean memory occupancy) inferior to the 
c lock  and SWS p o l i c i e s  [BELA 66.  KING 71 ] .  To 
remedy t h i s  s i t u a t i o n ,  the  dynamic a d d r e s s  t r a n s l a -  
t i o n  mechanism of t he  VAX was used  to  d e t e c t  and 
r eco rd  r e f e r e n c e s  to  p a g e s .  With t h i s  scheme,  a 
page fo r  which r e f e r e n c e  i n f o r m a t i o n  i s  to  be g a t h -  
ered  is marked as invalid although it remains in 
main memory. This state for a page is called the 

state. A reference generated to a 
location within this page causes an address- 
t r ~ n s l a t l o n - n o t - v a l l d  fault. However. the fault 
handler can detect this special state of the page 
and thus refrains from initiating the page transfer 
from secondary memory. In other words, the 
reclaimable state for a page corresponds to a valld 
page with the reference bit off if the reference 
bit were available. Since this method of simulat- 
ing page-referenced bits through software has a 
nonnegligible cost associated with it, the relative 
performance of some of the well-known replacement 
algorithms in this enviro~ent is no longer obvi- 
ous. 

In VMS, the vendor-supplied operating system 
for the VAX, the solution to the replacement deci- 
sion is simple. Each process is assigned a fixed- 
size memory partitionj called a resident setq that 
is managed according to the FIFO policy. Pages 
that are not members of any of these resident sets 
are grouped together to constitute the global free 
list which functions as a disk cache. Although 
there is some isolation between the paging behavior 
of the various processes due to the strictly local 
resident sets, the coupling that is introduced 
through this global free list has significant per- 
formance implications. Lazowska [LAZO 79] reports 
that in his measurements based on a real workload, 
system performance was significantly improved by 
increasing the minimum size of the free list (a 
system generation paremeter). An unfortunate 
consequence of allocating fixed-size partitions to 
processes is that a process has its pages taken 
away from its resident set (relatively small in 
size compared to the total real memory available on 
the machine) and placed in the free list to be sub- 
sequently reclaimed even though it may be the only 
active process in the system. 

Babaoglu has studied a class of hvbrid 
replacement policies that employ different algo- 
rithms for page replacement emongst two logical 
~artitions of pages in main memory [BABA 80], This 
class includes the VMS algorithm described above as 
an instance where the resident set management is 
according to the FIFO policy and the free list 
management is approximately Least-Recently-Used 
(LRU). [BABA 80] shows that for a given progrem 
and a given amount of available memory, there 
exists a resident set size for which the FIFO-LRU 
h y b r id  p o l i c y  a c h i e v e s  a f a u l t  r a t e  c l o s e  to  t h a t  
of  t h e  pure  LRU p o l i c y  wh i l e  i n c u r r i n g  a c o s t  com- 
p a r a b l e  to  t h a t  of  the  FIFO p o l i c y .  

UNIX is particularly ill-suited for such a 
scheme for several reasons. The UNIX system 

encourages the creation of a number of processes to 
accomplish most tasks-- processes are cheap. These 
processes are nonhomogeneous; they vary greatly in 
size and in the manner in which they access their 
address space. Furthermore, in certain processes 
the page reference behavior varies radically over 
time as the process enters different phases of exe- 
cution. The LISP system, which initiates garbage 
collection after an interval of execution, is an 
exemple of such a process. Thus, in this environ- 
ment, it is unlikely that we will find a single 
system-wide value for the fixed resident set size 
that will nearly optimize a cost function that is 
the weighted sum of the page fault rate and the 
rate at which reclaimable pages are referenced for 
the hybrid policy. In fact, even for a single pro- 
cess, the value of the resident set size must vary 
in time in order to track different phases of its 
execution and the varying amounts of real memory 
a v a i l a b l e  to  i t .  As d e s c r i b e d  e a r l i e r ,  the  t o t a l  
number of pages from the free list belonging to  a 
certain process is a dynemic quantity due to its 
sensitivity to the system-wide paging activity. A 
more r e c e n t  v e r s i o n  of the  VMS o p e r a t i n g  sy s t em 
( v e r s i o n  2 .1 )  a t t e m p t s  to  remedy some of t h e s e  
problems by a d j u s t i n g  the  p r o c e s s  r e s i d e n t  s e t  s i z e  
w i t h i n  two f i x e d  b o u n d a r i e s  a c c o r d i n g  to  a h e u r i s -  
t i c  based  on g l o b a l  pag ing  r a t e s  [DEC 80 ] .  Due to  
its u n a v a i l a b i l i t y  a t  the time, this modified v e r -  
s i o n  of the system was not included in our studies. 

S i m u l a t i o n  s t u d i e s  based  on a c t u a l  progrem 
a d d r e s s  t r a c e s  showed the  c lock  page r e p l a c e m e n t  
algorithm [CORB 68] to be much more robust with 
respect to the cost function defined above to vari- 
ations in the "mount of memory available to the 
program, the relative costs of page faults and 
reclaims, and the nature of the progrem itself than 
the fixed-partition VMS scheme [BABA 81a]. Under 
the simplest form of this policy, all the pages 
allocated to a program are thought of as ordered 
around the circuzference of a circle, called the 
loo 9, according to their physical page frame 
number. In addition, there is pointer, called the 
hand, that is advanced circularly through them when 
page faults occur until a replacement candidate is 
located. A page is chosen for replacement if it 
has not been referenced during the time interval 
between two successive passages of the hand through 
this page. Empirically, the clock page replacement 
policy achieves fault rates that are very close to 
those of the LRU policy although it is much easier 
to implement [GRIT 75], On machines with reference 
bits, it suffices to examine reference bits associ- 
ated with pages as the hand passes over them. If a 
page has the reference bit clear when the hand 
passes, it has not been referenced for one revolu- 
tion and thus it is selected for replacement. If a 
page has been referenced, then the reference bit is 
cleared and the page remains in the loop for at 
least another revolution. This exemining of the 
reference bit along with the associated action is 
called the scan operation. For our environment, 
this algorithm can remain unchanged since setting 
the reference bit associated with a page 
corresponds to moving it from the reclaimable to 
the valid state whereas resetting its reference bit 
corresponds to moving it from the valid to the 
r e c l a i m a b l e  s t a t e .  

79 



Another major departure in our UNIX memory 
management from the VMS design resulted from our 
decision to apply the clock page replacement algo- 
rithm globally to all pages in the system rather 
than locally to the pages for each process. This 
results in a variable-size memory partition for 
each process. This was motivated by studies where 
global versions of fixed-partition replacement pol- 
icies had been found to have better performances 
than their local counterparts [OLIV 74, SMIT 80, 
SMIT 81], and some special properties of our 
enviroement, 

(i) The relative simplicity of the global clock 
policy and, consequently, the ease of imple- 
mentation. 

(ii) The projected workload for the system had no 
requirement of guaranteed response times as 
in real-time applications. 

(iii) It was unreasonable to expect users to 
specify the sizes of the fixed program parti- 
tions since from the existing system they had 
little or no information about the memory 
requirements of programs. 

(iv) Without reference bits, the cost of imple- 
menting variable-partition local replacement 
policies such as SWS and Page Fault Frequency 
[CHU 76] was too high. We further comment on 
this in the following section. 

(v) UNIX encourages the construction of tasks 
consisting of two or more processes communi- 
cating through pipes, which must he co- 
scheduled if they are to execute efficiently. 
In most instances, the activity intensity, 
thus the memory demand, shifts over time from 
the left-most p r o c e s s  to the right-most pro- 
cess in the pipe while all of them remain 
active. It was our belief that in such an 
environment, dynamic partitioning of memory 
amongst these processes in real time is more 
appropriate than having local partitions 
(working sets) that are maintained in process 
virtual time. 

H e m o r y  d e m a n d  a n d  c l o c k  t r i g g e r i n g  

The c lock  page replacement p o l i c y  is on ly  
engaged upon a page f a u l t ,  a t  which t ime i t  s e l e c t s  

a page to be replaced. Given that the demand for 
memory exhibits nonuniform patterns with occasional 
high spikes (see Figure I), this strategy for the 
activation of the replacement policy is clearly 
suboptimal. 

Having incurred the cost of page replacement 
policy activation, we would like to select more 
than a single page to be replaced in order to anti- 
cipate short-term demand for more memory. To this 
end, the system maintains a free page pool contain- 
ing all of the page frames that are currently not 
in the loop. Our version of the clock policy is 
triggered whenever the size of this pool drops 
below a threshold. Then, the algorithm scans a 
given number of pages per second of real time Ca 
simplified version of this algorithm is discused in 
[EAST 793). Currently, the default trigger point 
for the free page pool size is set at i/4 of the 
real memory size and the default minimum scan rate 
of the hand is approximately I00 pages per second. 
As the free page pool size further drops below the 
threshold, the scan rate of the hand is increased 
linearly up to a given maximum value. The primary 
factor that determines this maximum value is the 
time that it takes to service a page reclaim from 
the loop (i.e., the time to simulate the setting of 
a reference bit). Measurements based on the 
current system indicate that this action consumes 
approximately 250 microseconds of processor time. 
Since the number of pages scanned by the clock 
algorithm provides an upper bound on the number of 
pages that can be reclaimed, the processor overhead 
due to the simulation of reference bits can be con- 
trolled by limiting this maximum scan rate. 
Currently, we allocate at most I0 percent of the 
available processor cycles to this function which 
implies that the maximum scan rate of the hand is 
limited to approximately 300 pages per second. Due 
to the existence of the free page pool, however, 
short duration memory demands far in excess of this 
value can be satisfied. 

The system maintains enough data to be able to 
reclaim any page from the free page pool regardless 
of how it arrived there. In addition to being 
replenished from the loop, the free page pool also 
receives pages of processes that are swapped out or 
comple t ed .  In  bo th  c a s e s ,  t h e s e  pages  can be 
r e c l a i m e d  by t he  p r o c e s s  upon a s u b s e q u e n t  swap i n  
or a f u t u r e  i n c a r n a t i o n  of the  same code.  p r o v i d e d  
of c ou r se  t h a t  t he  pages  have no t  been a l l o c a t e d  
f o r  a n o t h e r  p u r p o s e .  
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] r i S a r e  1 .  Number of  page f r ames  r e q u e s t e d  g l o b a l l y  i n  one 
second i n t e r v a l s  d u r i n g  a 33 m i n u t e  o b s e r v a t i o n  p e r i o d .  
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Given the cost to simulate the setting of a 
reference bit, our previous remark concerning the 
unsuitability of local variable partition page 
replacement policies in the UNIX enviror, nent is 
justified. As an example, using the Sampled Work- 
ing Set policy with a window size of I00,000 
instructions (approximately I00 milliseconds on the 
VAX) operating with a program having a 400-page 
working set would consame i00 percent of the pro- 
cessor cycles just to simulate reference bits 
(assuming that the working set of the program 
remained unchanged between two consecutive sample 
points). 

The use of a modified clock page replacement 
algorithm where the scan rate is based on the 
available memory has several other advantages, as 
well. The length of the free page pool becomes a 
natural indicator of the amount of memory conten- 
tion in the system. As we shall see, the inability 
of the system to maintain some specified amount of 
free memory is the basis for load control, and 
causes process deactivation by swapping. Control 
of the rate of the scan allows modified page 
write-back activity, that is initiated when dirty 
pages are removed from the clock loop to be spread 
more uniformly over time, thereby easing contention 
for disk. 

I u p l e n e u t a t i o n :  n e w  s y s t e m  f a c i l i t i e s  

The UNIX system memory-management facilities 
are particularly simple. Each user process has a 
read-only shared program area, a modifiable data 
area, and a stack. An exec system call overlays a 
process' address space with a particular program 
image from a file consisting of the shared code and 
the initialized data. New processes are created by 
the fork system call which causes a process to 
duplicate itself. Usually, the command interpreter 
accomplishes its task by first creating a copy of 
itself to establish the context for the command and 
then causes this copy overlay itself with the file 
that is the image of the command. Except for 
shared progrem areas, no shared memory between 
processes is available. Access to files and dev- 
ices is through read and write system calls; no 
segment-based or page-based shared access to file 
pages is available. 

Consistent with our design goals, we wished to 
keep changes to the system as simple as possible 
and orthogonal to the rest of the system design. 
Then, further changes in the UNIX system would not 
invalidate our efforts. 

The conversion of the swap-based system to a 
paged system began in the late spring of 1979 and 
the first version of the paging system was put into 
production use on a single machine in September of 
1979. At that time, the primitives for the swap- 
based UNIX system were still in use. Processes 
were created using the f o r k  system call which 
copied a process' address space page-by-page to 
create the new address space. This newly-formed 
address space was then overlaid with a new image 
through the exec system cat1. These primitives, 
while simple to implement and relatively cheap 
(involving memory-to=memory copy and file reading) 
in a swap-based system, were very expensive under 
the new system, since progrems might be partially 
loaded in memory and could be much larger. 

We found that a vast majority (over 80 per- 
cent) of all forks executed in the system were due 
to the command interpreter. Since these forks only 
serve to establish the context for the new process, 
duplication of the entire address space was wasted 
effort. Most of the sharp spikes in the global 
memory demand pattern of Figure 1 could be attri- 
buted to processes forking and/or execing. The 
nondemand nature of these requests for memory (in 
the sense that they are an implementation artifact) 
overtaxed the page replacement algorithm and had 
grave performance consequences. 

A natural solution to the problem would have 
been to include a "copy-on-write" facility to 
implement a fork similar to that used in various 
PDP-10 operating systems (such as TENEX [BOBR 72]). 
In this scheme, the two processes would be allowed 
t o  s h a r e  the  same a d d r e s s  s p a c e  and the  copy ing  a t  
t he  page l e v e l  would be d e f e r r e d  u n t i l  t he  t ime of  
t he  first modification of a page by either process. 
However, this would have significantly increased 
the number of modifications to UNIX and hence 
delayed the completion of a workable and useful 
system. At the time, the desires of our user com- 
munity did not indicate that shared-memory primi- 
tives would be necessary in the near future, 
Copy-on-write paging seemed to introduce a good 
deal of complexity into the relatively simple sys- 
ten data structures to warrant support for the very 
small emount of computation which occurs between a 
fork and an exec system call. 

A new primitive t o  replace most instances of 
t he  fork system call was designed. This primitive, 
called virtual-fork, allows the original process to 
establish the system context for the new process 
but refrains from creating the address space until 
the subsequent exec system call that is issued by 
the new process or the completion of the new pro- 
cess. During this interval, the system context of 
the original process is dormant. To put it another 
way, the new process is allowed to run within the 
address space of the original process until it 
establishes its own address space through an exec 
system call or completion at which point the origi- 
nal process, which was dormant, regains its address 
space. Obviously, during this transition time, the 
new process must not modify the contents of the 
address space that is ,ton loan tt to it. This 
mechanism allows a new process to be created 
without any copying of address space and without 
requiring a mechanism like ,,copy.on.write t, 

Note that there are instances of process crea- 
tion where the virtual-fork system call is inap- 
propriate. An example of such a case occurs when 
comnmnds are executed in the ttbackground. It Then, 
the new process is initiated but the command inter- 
preter does not wait for its completion and is 
ready to accept a new command line. However, all 
other instances of the fork system call could be 
(and were) replaced with the virtual-fork call 
without change to the calling program. It is quite 
easy to implement this primitive on non-paged 
machines as well as paged machines, and there are 
strong indications that the overhead of process 
creation in the swap-based PDP-II implementation of 
UNIX would be reduced if such a primitive were 
imp I em ent ed. 
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A new load format was also provided to reduce 
the implied overhead of the exec call. Progrems 
loaded using this new format would have their pages 
demand-loaded from the file system rather than 
pre-loaded as in the previous swap-based system. 
This reduced the overhead of process invocation. 
and was soon made the default load format. 

L i a i t i u g  page  t r a f f i c  and c o n t r o l l i n g  n u l -  
t i p r o g r m i n g  l e a d  

I n  a d d i t i o n  t o  t h e  p r o c e s s o r  ove rhe ad  con-  
s i d e r a t i o n s  which limit the scan rate of the clock 
replacement algorithm, there are global system con- 
siderations involved in limiting page traffic. 
Input-output activity generated by page replacement 
should not displace too much of the input-output 
activity generated by program request. UNIX typi- 
cally runs on relatively small machines that usu- 
ally have only two moving head disk drives which 
are used for all system activity including paging, 
swapping and file system transfers. Special paging 
devices are rare in such systems. It is not prac- 
tical to design a system that saturates one of 
these arms to maximize memory usage. Input-output 
bandwidth is often as precious as memory residency. 
Load control mechanisms such as the ttL=S~t or the 
t'50 percent Iv criterion [DENN 76, DENN 77], which 
assume the availability of a separate paging dev- 
ice, are therefore inappropriate. We therefore 
decided to deactivate processes by swapping them to 
secondary storage when demand for main memory 
exceeded  our  ability to s u p p l y  it. 

Multiprogramming load control in our system is 
thus based on a desire to limit paging overhead. 
When the system finds that it cannot maintain an 
acceptable -mount of free memory while consuming 
approximately 10 percent of the available processor 
time to sample page utilization it lowers memory 
demand by removing a process from the set of run- 
able processes. The process to be swapped out is 
selected by choosing the oldest amongst the n larg- 
est resident processes. This policy represents a 
compromise between the lar~est-flrst and the 
oldest-~ policies [COFF 73-]. Neither of these 
policies was found to be satisfactory in its pure 
form; the former prohibits a large process from 
making any progress while the latter wastes effort 
by constantly swapping out small processes that do 
not contribute much to the memory demand. 
Currently, the default value for the variable n is 
4. The pages of the swapped-out process are writ- 
ten to secondary storage if necessaryl and removed 
from the loop and returned to the free list. 
Processes that are swapped out are assigned priori- 
ties to return to the tunable set based on their 
size (smaller jobs have higher priority) and the 
amount of time they have been swapped out (priority 
increases as time goes by). Sufficient time delay 
is built into the swapping algorithm to ensure that 
useful work gets done between swaps. Since in a 
reasonably-configured system swapping out a process 
is a rare eventD we do not swap in the resident set 
a process had at the time it is swapped out. In 
our environment, the long period of inactivity that 
caused the swap out is usually a leading indicator 
of a locality transition through the invocation of 
a new function (for example, a new input line to 
the command interpreter). In such casesD the over- 

l a p  be tween  t h e  o ld  r e s i d e n t  s e t  and t h e  new i s  
m i n i m a l .  However .  even  w i t h  an i n i t i a l l y  empty 
resident set, chances are the process will find 
some of its pages in the free page pool, and can 
simply reclaim them by referencing them. 

H o d e l i n g  t h e  f r e e  page  p o o l  

The purpose of the free page pool is to 
ttamoothlt the high frequency components of the 
memory demand by absorbing the sharp peaks with 
little resistance. To accomplish this, the free 
page pool requires periodic replenishment. Page 
replacement, process completion and process swap 
out replenish this pool, the latter two without 
explicit action by the page replacement policy. 
Our variant of the tttriggered sweep tt clock page 
replacement algorithm with varying sweep rates has 
three parameters: the free memory threshold at 
which it is engaged, the scanning rate at this 
threshold, and the maximum scanning rate. Unfor- 
tunately, this does not lend itself easily to ana- 
lytic modeling efforts. 

To formalize the free memory control policy, 
one can view the free page pool as a stock room 
containing a certain inventory of a commodity and 
memory requests as the demands for that commodity. 
We can then apply inventory control theory to our 
problem with the hope of selecting a policy for the 
replenishment action (the ttorder point It and the 
~order quantity te in inventory control terminol- 
ogy) that can be demonstrated to be stochastically 
optimal with respect to a certain objective func- 
tion defined for the process. Using a mapping of 
the costs involved in the classical inventory prob- 
lem to the problem at hand and an adequate modeling 
of the stochastic demand process, we can obtain 
policy parameters that will result in approximately 
minimum cost in the long run. This effort is 
currently underway and will be reported in [BABA 
81b]. 

C o m p a r i s o n  w i t h  t h e  s w a p - b a s e d  s y s t e m  

A f t e r  two mon ths  of  p r o d u c t i o n  u s e  and a r e a -  
s o n a b l e  amount of  t u n i n g ,  we dec ided  t o  compare  t h e  
performance of the system running with and without 
the virtual-memory changes. A script-driven exper- 
iment was designed for a stand-alone configuration 
consisting of 1 megabyte of main memoryD two disk 
arms on two different controllers, each with a peak 
transfer rate of 1 megabyte per second and a 40 
millisecond average access time. For the com- 
parison we used the version of the swap-based sys- 
tem that was the base for the paging developments. 
The page size in use in the paging version of the 
system was 512 bytes. 

The basic unit of work generated by the script 
was made up of four concurrent terminal sessions: 

l i s p  A LISP c o m p i l a t i o n  o f  a p o r t i o n  o f  t h e  
LISP c o m p i l e r ,  f o l l o w e d  by a t t d u m p l i s p  t l  
using the lisp interpreter to create a 
new b i n a r y  version of t h e  c o m p i l e r .  
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¢ ¢ o m p  An editor session followed by the compi- 
lation and loading of several small pro- 
grams that support the line-printer 
spooler. 

typeset An editor session followed by the 
typesetting of a mathematical paper and 
production of output for a raster 
plotter. 

trivial Repeated execution of a trivial command 
(printing the date) every few seconds. 
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Staggered multiple initiations of from one to 
four  of t hese  t e rmina l  s e s s i o n s  were used to  c r e a t e  
i n c r e a s i n g  l e v e l s  of  load on the  sys tem.  F igure  2, 
g i v e s  the  average comple t ion  t imes f o r  each type of  
s e s s i o n  under the  two sys tems .  For the  n o n t r i v i a l  
s e s s i o n s ,  comple t ion  t imes  were ve ry  s i m i l a r  under 
the  two sys tems ,  wi th  the  paging v e r s i o n  of the  
system running ( i n  a l l  hut one case)  f a s t e r .  The 
interesting observation is that the swap-based sys- 
tem departed from linear degradation more rapidly. 
This trend is most noticeable in the response time 
for the trivial sessions. 

Figure 3 gives system-wide measure~ents col- 
lected during the same experiments whose results 
were given in Figure 2. These measurements show 
the same trend for both the time when the last 
script completed execution and average completion 
times for individual sessions, with the paging sys- 
tem slightly faster and degrading more linearly 
than the  swap system w i t h i n  the  measured range .  
Under heavy load .  system overhead was un i fo rmly  
g r e a t e r  under the  paging systema c o n s t i t u t i n g  26 
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Figure 3. System-wide measurements. 
(a) total completion time, (b) average completion 
time, (c) system time, (d) page traffic. 

percent of the CPU utilization as compared to 20 
percent under the swap system. User-CPU utiliza- 
tion under this load was, however, uniformly 
greater for the paging system, averaging 1-18 per- 
cent, while the swap-based system averaged only 42 
percent. 

Finally. the total page traffic generated 
under the two systems was measured. The measure- 
ment accounts for both paging and swapping traffic 
under the paging system, as well as transfer of all 
system information (control blocks and page tables) 
under both systems. Although the paging system 
resulted in far fewer total pages transferred, the 
number of transactions required to accomplish this 
was much greater since most transfers under the 
paging system were due to paging activity rather 
than swapping activity. In this version of the 
paging system, all paging input~output activity was 
on single 512 byte pages. 

P e r f o r m a n c e  emhmmcemeut8 emd compmriooma 
v i t h  h y b r i d  paKinK 

After measuring the system and seeing that the 
performance was comparable with the swap system, we 
determined that there was a major bottleneck in the 
system due to the small page and file block size-- 
512 bytes. Measurements of typical system progrems 
which processed files one character at a time 
showed that the fastest such progr-ms produced and 
consumed data at a rate of about 80 512-byte pages 
per second. The file system in use on UNIX at that 
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time, however, could produce about 40 blocks per 
second on average, resulting in a factor of two 
mismatch between typical program speed and average 
file system throughput. 

The file block size was increased from 512 to 
1024 bytes and physically adjacent pages were 
grouped in pairs producing the current 1024-byte 
"pages''. In this paper, all future references to 
"pages'' will imply this new size unless noted 
otherwise. With the new page and file block size, 
total system throughput on the script-driven bench- 
marks discussed above improved significantly, with 
the completion time dropping an average of 30 per- 
cent, user-CPU utilization rising nearly 20 percent 
and system overhead dropping below that of the 
swap-based system. 

Benchmarks of paging intensive synthetic pro- 
grams run on VMS and UNIX showed, however, that 
UNIX could not supply memory to heavily paging pro- 
grams at a rate comparable to VMS [KASH 80]. aim- 
pie test programs that sequentially or randomly 
(with varying degrees of randomness) accessed vir- 
tual memory were run on both systems and ran much 
faster on the VMS system which clustered pages both 
on input and output. The problem, here, was simi- 
lar to the problem with the file system: inadequate 
blocking. Transferring only 1024 bytes of data 
after incurring 25-30 milliseconds while waiting 
for a moving-head storage device kept the bandwidth 
IOW. 

To remedy the situation, a simple form of 
pre-paging was implemented. Upon a page fault, the 
faulting page as well as the next several virtually 
(and physically) adjacent pages were read in as a 
single operation. Similarly, upon a page out deci- 
sion, the set of modified pages would be searched 
to construct clusters of virtually (again also phy- 
sically) adjacent pages that would be cleaned in a 
single operation. Both the input and output clus- 
ter sizes are variables that can be varied while 
the system is in operation. This drastically 
improved system performance on the simple test pro- 
grams due to their sequential nature and the fact 
that they always dirtied pages by writing into 
them. 

There remained, however, a performance gap 
between our system and VMS whose cause eluded us at 
the time. The problem was discovered to be the 
placement of pre-paged data. Such data was placed 
in the clock loop, but marked as being not refer- 
enced, so it would be moved to the free page pool 
in ~ single revolution of the clock if it remained 
unreferenced by the program. For progrems like the 
test program, which have a very high data rate but 
do not use all the prefetched data, this resulted 
in an excessive load on the clock algorithm. 

This flaw in the pre-paging algorithm was 
corrected by placing the pre-paged pages at the 
bottom of the free page pool list rather than the 
clock loop. Recal l  that  the system f r ee  page pool,  
which is implemented as a queue, is fairly long. 
On a busy system, pages near the bottom of this 
list may survive (i.e., remain reclaimable) for a 
few seconds before being re-used. Since the pages 
were pre-paged because they were adjacent to a 
recently referenced page, it is desirable to retain 

them only for a short while if they are not refer- 
enced. The modified pre-paging placement policy 
more closely reflects this intent. 

A new system call was added to notify the sys- 
ten that a process would be exhibiting anomalous 
behavior. This call caused the reference bit simu- 
lation to be turned off resulting in approximately 
random page replacement (since the physical order- 
ing of page frames in the free page pool from wbere 
they are allocated is destined to be random after a 
period of operation of the system) for these 
processes. Currently, the LISP system issues such 
a call before entering the garbage collection 
phase, 

After these changes, the performance of the 
two systems on the test programs became comparable. 
In practice, however, the UNIX page replacement 
algorithm has the advantage that it does not give 
processes fixed partitions and therefore tends to 
avoid unnecessary processor overhead (a different 
form of thrashing [DENN 68b3 that is unique to our 
environment) in a way that a fixed partition scheme 
cannot do. We are currently measuring the perfor- 
mance of different pre-paging and clustering stra- 
tegies using trace data that was collected from the 
system. It is hoped that we can develop a model 
for the different techniques and justify or improve 
on the current system algorithms. [JOY 80] gives 
more information on the current performance charac- 
teristics of the UNIX system on the VAX. 

U s e r  e x p e r i e n c e  a n d  f u t u r e  d i r e c t i o n s  

Even before the performance improvements 
described above were incorporated, the system had 
met its original goals by being able to support 
applications that we could not earlier. Distribu- 
tion of the system to other VAX UNIX sites began in 
January 1980, and over 50 other sites were running 
the system in the spring of 1980. The decision to 
keep the system simple worked extremely well; after 
fixing a few bugs during beta-site testing, the 
January 1980 system was distributed for a full year 
with no further kernel changes. 

Since the initial distribution of the system 
in January 1980, the use of the system has expanded 
to over I00 sites. A number of portions of the 
system have been tuned to increase system effi- 
ciency. We feel that the system performs well in 
our time-sharing environment. The popularity of 
the system has encouraged its use with the most 
demanding of application programs and in environ- 
ments foreign to a time-sharing systems. 

We are currently investigating the paging 
behavior of progr~.s that process very large 
amounts of data. Large scale mathematical programs 
and image processing programs tend to have virtual 
memory behaviors unlike those which have been stu- 
died in most of the literature. By exploiting the 
properties of these programs, it is hoped that the 
system will be able monitor their behavior and 
adapt the system's paging policy to run them more 
efficiently. 
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Smmtazy amd c o n c l u s i o n s  

A page replacement algorithm that is to func- 
tion in a machine lacking reference bits must use a 
minimum of reference information because such 
information is expensive to gather. The global 
clock paging algorithm appears to satisfy this con- 
dition. 

System performance under extreme paging load 
can be as good using the global clock algorithm as 
it is using a hybrid paging technique. In prac- 
tice, the ability of the clock algorithm to vary 
the memory partitions dynamically increases memory 
utilization significantly over a scheme which allo- 
cates fixed partitions. 

The global clock page replacement algorithm is 
limited in its ability to supply pages on a machine 
with no reference bits. This is normally not a 
problem under a time-sharing load, but can be when 
high data rate programs are run. 
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