
CS	736	
Lecture	8	
Large	Page	Support:	
	

1. Motivation:	
a. TLB	size	limited	by	being	in	the	middle	of	a	processor,	accessed	on	every	cycle	
b. Memory	size	limited	by	the	amount	you	are	willing	to	spend,	#	of	physical	

address	bits	
c. You	can	now	buy	4TB	servers,	
d. PROBLEM:	

i. Amount	of	memory	a	TLB	can	reference	is	small	
1. 4kb	*	64		entries,	=	256	kb	

e. QUESTION:	What	are	some	solutions?	
i. Turn	off	virtual	memory	

1. Singularity,	uclinux	
a. need	new	protection	mechanism	

ii. Make	TLBs	larger	and	slower	
1. makes	common	case	slower	

iii. Add	a	second	level	TLB	
1. Still	performance/size	sensitive	

a. With	1024	entries,	still	only	4MB	
iv. Share	a	TLB	with	multiple	cores	
v. Prefetch	into	the	TLB	

2. Standard	solution:	multiple	page	sizes	
a. RISC	machines:	

i. SPARC:	8kb,	64kb,	512kb,	4mb	
ii. ARM:	4kb,	64kb,	1mb,	16mb	

1. Typically	not	hardware	walked,	so	flexible	SW	structures	
iii. How	do	page	table?	

1. Often	copy	PTEs:	entries	for	all	the	pages	in	a	large	page	indicate	
the	size	

b. Intel	
i. 4kb	(64	entries)	,	2mb	(32	entries),	1	gb	(4	entries)	

c. AMD	
i. Same	sizes,	32	entry	L1	(fully	associative),	1024-entry	8-way	associative	

L2	
ii. Follows	radix	tree	of	page	table	

1. Easy	for	hardware	walker	–	a	level	points	to	a	page	or	the	next	
level	

d. TLB	design	
i. Fully	associative	(Sun	Niagara,	AMD)	

1. Can	put	any	page	size	anywhere	in	TLB	
ii. Split	set-associative	TLB	



1. Have	a	separate	TLB	for	each	page	size	
2. Each	TLB	is	set	associative	

iii. QUESTION:	Why?	
1. Not	know	page	size,	so	now	know	which	set	to	access	in	set	

associative	
e. QUESTION:	DO	LARGE	PAGES	ALWAYS	HELP	

i. Can	waste	memory	if	you	don’t	use	all	the	data	
ii. If	have	fewer	TLB	entries	(see	1GB	pages	on	Intel)	may	have	more	TLB	

misses	
iii. Expensive,	inaccurate	to	swap.	

3. OS	Support	possibilities	
a. Use	for	compile/install-time	known	data:	

i. kernel	code,	data	
1. Linux	maps	physical	memory	into	its	address	space	using	

arithmetic	
2. Map	whole	kernel,	heap	on	large	pages	

ii. Program	segments	in	executable	
1. Mark	segments	(code,	data,	etc.)	with	a	page	size	
2. Must	know	at	compile	time	what	to	do,	how	many	pages	available	

on	the	machine	in	the	TLB	
b. Program	request	

i. Windows:	VirtualAlloc(MEM_LARGE_PAGES)	
ii. Linux:	mmap(libhugetlbfs)		

1. Create	“virtual	file”	/mnt/hugepagefile	
2. mmap(virtual	file,	memory	size)	

a. Reserve	contriguous	memory	for	large	pages	
b. Allocate	and	fill	in	on	access	

3. PROBLEM:	What	happens	if	a	process	forks()?	
iii. QUESTION:	Is	this	enough?	

1. Lets	big-memory	programs	that	suffer	“do	the	right	thing”	
2. Doesn’t	help	most	programs	(lost	opportunity)	

c. Transparent	super	pages/huge	pages	
i. Programs	do	the	normal	thing	
ii. OS	tries	to	use	superpages	if	possible	

4. INTERNAL	OS	Memory	management	
a. GOAL:	Need	to	have	contiguous	memory	

i. Overall:	always	merge	contiguous	blocks	into	“extents”	
ii. Have	constant-time	operations	via	efficient	data	structures	

1. Easily	find	whether	neighbor	is	available	for	merging	
b. PROBLEM:	

i. Frequent	allocation/deallocation	creates	fragmentation	
ii. Pinned	pages	cannot	be	moved	–	e.g.	for	DMA	

c. DATA	STRUCTURE:	Buddy	heap	
i. Array	of	lists	of	powers-of-2	regions	



ii. Each	list	is	sorted	
iii. Coalesce	neighboring	buddies	into	next	power-of-2	list	

5. Implementing	Transparent	Super	Pages	
a. Reservations:	on	every	use	of	a	page,	reserve	pages	around	it	to	form	a	large	

page	
i. a	reservation	is	a	data	structure	referencing	all	the	extra	pages,	taking	

them	out	of	kernel	allocator	
ii. Can	reclaim	an	unused	reservation	for	someone	else	

iii. 	
b. Options:	

i. Decide	at	allocation	time	on	a	page	size	
1. promote	allocations	
2. Like	static	approach	–	but	statically	predicted	by	OS	
3. PROBLEMS:	

a. Can	get	it	wrong	and	it	costs	a	lot	
ii. Decide	based	on	references	to	“upgrade”	or	“downgrade”	a	page	

1. If	all	of	a	large	page	is	used,	should	upgrade	to	a	large	page	
2. HOW?	

a. Find	a	large	page	and	move	existing	data	
b. Pick	pages	already	in	the	right	place	and	get	rid	of	existing	

data	and	move	new	data	in	
3. VERY	EXPENSIVE	

iii. Prepare	for	upgrade	on	all	allocations	
1. Reserve	adjacent	pages	making	a	large	page	
2. Use	reserved	pages	on	nearby	faults	
3. At	some	threshold,	upgrade	to	a	large	page	

c. POLICY:	What	page	size	should	be	reserved	(if	there	are	multiple)	
i. Fixed-size	objects	(code,	global	data):	pick:	

1. 	largest	aligned	superpage	that	contains	faulting	page,		
2. doesn’t	overlap	with	other	pages,		

tributes. The latter implies that all base pages that form a
superpage must have the same protection attributes (read,
write, execute). Also, due to the coarse granularity of ref-
erence and dirty bits, the operating system can determine
whether some part of the superpage has been accessed or
written to, but cannot distinguish between base pages in
this regard.

2.3 Issues and tradeoffs
The task of managing superpages can be conceptually
broken down into a series of steps, each governed by a
different set of tradeoffs. The forthcoming analysis of
these issues is independent of any particular processor
architecture or operating system.
We assume that the virtual address space of each pro-

cess consists of a set of virtual memory objects. A mem-
ory object occupies a contiguous region of the virtual
address space and contains application-specific data, as
shown in Figure 2. Examples of memory objects include
memory mapped files, and the code, data, stack and heap
segments of processes. Physical memory for these ob-
jects is allocated as and when their pages are first ac-
cessed.

Allocation: When a page in a memory object is first
touched by the application, the OS allocates a physical
page frame, and maps it into the application’s address
space. In principle, any available page frame can be used
for this purpose, just as in a system without superpage
support. However, should the OS later wish to create
a superpage for the object, already allocated pages may
require relocation (i.e., physical copying) to satisfy the
contiguity and alignment constraints of superpages. The
copying costs associated with this relocation-based allo-
cation approach can be difficult to recover, especially on
a busy system.
An alternative is reservation-based allocation. Here,

the OS tries to allocate a page frame that is part of an
available, contiguous range of page frames equal in size
and alignment to the maximal desired superpage size,
and tentatively reserves the entire set for use by the pro-
cess. Subsequently, when the process first touches other
pages that fall within the bounds of a reservation, the cor-
responding base page frames are allocated and mapped.
Should the OS later decide to create a superpage for this
object, the allocated page frames already satisfy the con-
tiguity and alignment constraints. Figure 2 depicts this
approach.
Reservation-based allocation requires the a priori

choice of a superpage size to reserve, without foreknowl-
edge of memory accesses to neighbouring pages. The OS
may optimistically choose the desired superpage size as
the largest supported size that is smaller or equal to the

size of the memory object, but it may also bias this deci-
sion on the availability of contiguous physical memory.
The OS must trade off the performance gains of using a
large superpage against the option of retaining the con-
tiguous region for later, possibly more critical use.

address
Virtual

space

allocated
page frame

alignment
superpage

boundary

Object
mapping

address
space

Physical

reservation

mapped pages

unused
page frame

Figure 2: Reservation-based allocation.

Fragmentation control: When contiguous memory is
plentiful, the OS succeeds in using superpages of the
desired sizes, and achieves the maximum performance
due to superpages. In practice, reservation-based alloca-
tion, use of different page sizes and file cache accesses
have the combined effect of rapidly fragmenting avail-
able physical memory. To sustain the benefits of super-
pages, the OSmay proactively release contiguous chunks
of inactive memory from previous allocations, at the pos-
sible expense of having to perform disk I/O later. The
OS may also preempt an existing, partially used reserva-
tion, given the possibility that the reservation may never
become a superpage. The OS must therefore treat con-
tiguity as a potentially contended resource, and trade off
the impact of various contiguity restoration techniques
against the benefits of using large superpages.

Promotion: Once a certain number of base pages
within a potential superpage have been allocated, assum-
ing that the set of pages satisfy the aforementioned con-
straints on size, contiguity, alignment and protection, the
OS may decide to promote them into a superpage. This
usually involves updating the page table entries for each
of the constituent base pages of the superpage to reflect
the new superpage size. Once the superpage has been
created, a single TLB entry storing the translation for any
address within the superpage suffices to map the entire
superpage.
Promotion can also be performed incrementally.

When a certain number of base pages have been allo-
cated in a contiguous, aligned subset of a reservation, the
OS may decide to promote the subset into a small super-
page. These superpages may be progressively promoted



3. Fits	within	the	object	(no	waste)	
ii. Dynamically	growing	objects	(stack,	heap)	

1. Largest	aligned	superpage	containing	faulting	page	
2. Not	overlapping	other	superpages	
3. Can	reach	beyond	object,	but	not	larger	than	object	

a. Doesn’t	waste	large	pages	on	small	objects	
d. PREEMPTING	RESERVATIONS:	

i. If	not	contiguous	pages	for	new	reservation:	
1. can	not	reserve	for	new	allocation	
2. preempt	existing	reservation	that	has	many	unallocated	frames	

ii. Preferred	POLICY:	
1. Preempt	existing	reservation	to	create	new	one.	
2. Pick	oldest	reservation	(least	recently	allocated	a	page	from	the	

reservation)	
a. Give	away	un-used	pages,	but	don’t	remove	valid	data?	

3. WHY?	
a. Useful	reservations	likely	to	be	used	quickly	

e. Promotions/promotions	
i. Incremental:	grow	mapping	to	next	available	page	size	

1. QUESTION:	Do	you	promote	early,	when	80%	of	base	pages	used,	
or	wait	for	all	100%?	

2. ANSWER:	Promote	only	at	100%	
a. Common	case	is	programs	use	memory	early	and	

completely	
b. Makes	sense	for	small	super	pages	(8!)	

ii. Demotions:	on	page	replacement	
1. Replace	large	page	with	next-size	smaller	
2. Do	recursively	around	victim	page	
3. PROBLEM:	No	referenced	bit	on	individual	pages	

a. Cannot	tell	if	whole	superpage	is	used	or	only	parts	
4. SOLUTION:	demote	to	smaller	pages	&	get	more	precise	

information	
a. Demote	superpages	under	pressure	but	NOT	swap	out	
b. Occurs	on	clock	hand	sweep	
c. Re-promote	if	ALL	pages	around	base	page	are	re-

referenced	
f. Swapping	dirty	pages	

i. QUESTION:	Do	you	need	to	swap	large	pages?	
1. ANSWER:	Yes,	because	transparent!	

ii. No	dirty	bit	for	base	pages	–	not	know	what	changed	
1. Treat	all	base	pages	as	dirty,	must	write	all	back	

iii. SOLUTION:	
1. Demote	clean	super	pages	on	write	

a. set	read	only,	trap,	demote,	re-map,	set	dirty	bit	



2. Re-promote	only	if	all	base	pages	written	
iv. ALTERNATIVE:	

1. Store	hash	of	clean	page;	assume	if	hash	matches	than	is	clean.	
a. PROBLEM:	Is	possibility	of	being	wrong	(see	VMware)	
b. PROBLEM:	costly	to	do	(when	under	memory	pressure)	

g. TRACKING	RESERVATIONS:	
i. Problem:	Lots	of	reservations	around	all	pages	allocated	

1. Solution:	keep	a	list	per	page	size	
2. Reservation	goes	on	the	list	of	the	page	size	that	can	be	gained	by	

preempting	reservation	
a. Sort	reservations	by	time	of	last	allocation	–	used	for	

preempting	
b. Split	reservation	into	largest-sized	extents	(not	base	pages)	

i. Keep	contiguity	as	long	as	possible	
ii. SO:	if	need	64KB,	can	go	to	64KB	list	and	preempt	a	reservation	
iii. QUESTION:	What	about	Intel,	with	1GB,	2MB,	4KB	pages	

1. 1GB	reservations	go	on	2MB	or	4KB	list	
2. 2MB	reservations	go	on	4KB	list	(cannot	make	smaller	

superpages)	
h. FINDING	MEMORY	

i. WHY?	
1. Need	to	find	reservations	on	page	fault	
2. Detect	overlapping	regions	
3. Have	information	on	whether	page	promotions	are	possible	

a. if	all	neighboring	pages	exist	
4. Identify	un-used	regions	for	preemption	

ii. Population	Map:	
1. Data	structure:	radix	tree	like	a	page	table,	each	level	is	a	page	

size	

2. 	
3. Contents:	

transferred to the buddy allocator and partially populated
ones are reinserted into the appropriate lists. For exam-
ple, when preempting a 512KB reservation taken from
head of the 64KB list, the reservation is broken into eight
64KB extents. The ones with no allocations are freed and
the ones that are partially populated are inserted at the
head of the 8KB reservation list. Fully populated extents
are not reinserted into the reservation lists.
When the system needs a contiguous region of free

memory, it can obtain it from the buddy allocator or by
preempting a reservation. The mechanism is best de-
scribed with an example. Still in the context of the Alpha
CPU, suppose that an application faults in a given page
for which there is no reserved frame. Further assume
that the preferred superpage size for the faulting page is
64KB. Then the system first asks the buddy allocator for
a 64KB extent. If that fails, it preempts the first reser-
vation in the 64KB reservation list, which should yield
at least one 64KB extent. If the 64KB list is empty, the
system will try the 512KB list. If that list is also empty,
then the system has to resort to base pages: the buddy
allocator is tried first, and then the 8KB reservation list
as the last resource.

4.9 Population map
Population maps keep track of allocated base pages
within each memory object. They serve four distinct pur-
poses: (1) on each page fault, they enable the OS to map
the virtual address to a page frame that may already be
reserved for this address; (2) while allocating contigu-
ous regions in physical address space, they enable the
OS to detect and avoid overlapping regions; (3) they as-
sist in making page promotion decisions; and (4) while
preempting a reservation, they help in identifying unal-
located regions.
A population map needs to support efficient lookups,

since it is queried on every page fault. We use a radix tree
in which each level corresponds to a page size. The root
corresponds to the maximum superpage size supported
by the hardware, each subsequent level corresponds to
the next smaller superpage size, and the leaves corre-
spond to the base pages. If the virtual pages represented
by a node have a reserved extent of frames, then the node
has a pointer to the reservation and the reservation has a
back pointer to the node.
Each non-leaf node keeps a count of the number of

superpage-sized virtual regions at the next lower level
that have a population of at least one (the somepop
counter), and that are fully populated (the fullpop
counter), respectively. This count ranges from through
, where is the ratio between consecutive superpage

sizes (8 on the Alpha processor). The tree is lazily up-
dated as the object’s pages are populated. The absence

of a child node is equivalent to having a child with both
counters zero. Since counters refer to superpage-sized
regions, upward propagation of the counters occurs only
when somepop transitions between 0 and 1, or when
fullpop transitions between and . Figure 3
shows one such tree.

(somepop, fullpop)

1,0 4,4

3,1

2,1

1,0

Figure 3: A population map. At the base page level, the actual
allocation of pages is shown.

A hash table is used to locate population maps. For
each population map, there is an entry associating a
memory object, page index tuple with the map, where
page index is the offset of the starting page of the map
within the object. The population map is used as follows:

Reserved frame lookup: On a page fault, the virtual
address of the faulting page is rounded down to a multi-
ple of the largest page size, converted to the correspond-
ing memory object, page index tuple, and hashed to de-
termine the root of the population map. From the root,
the tree is traversed to locate the reserved page frame, if
there is one.

Overlap avoidance: If the above procedure yields no
reserved frame, then we attempt to make a reservation.
The maximum size that does not overlap with previous
reservations or allocations is given by the first node in
the path from the root whose somepop counter is zero.

Promotion decisions: After a page fault is serviced,
a promotion is attempted at the first node on the path
from the root to the faulting page that is fully populated
and has an associated reservation. The promotion at-
tempt succeeds only if the faulting process has the pages
mapped with uniform protection attributes and dirty bits.

Preemption assistance: When a reservation is pre-
empted it is broken into smaller chunks that need to be
freed or reinserted in the reservation lists, depending on
their allocation status, as described in Section 4.8. The
allocation status corresponds to the population counts in
the superpage map node to which the reservation refers.



a. Number	of	entries	at	next	level	that	are	full	(fullpop)	
b. Number	of	entries	at	next	level	that	are	non-zero	but	not	

full	(2	levels	smaller	at	least)	
4. USE:	

a. Find	allocation	for	a	page:	
i. walk	down	tree	to	find	reserved	frame	

b. Overlap	avoidance:	
i. walk	down	until	“somepop”	is	zero	

c. Promotion:	
i. If	fullpop	goes	from	R-1	to	R	(fill)	

6. IMPLEMENTATION	ISSUES:	
a. Swapping:	want	contiguity	awareness	in	swapping	

i. FreeBSD	background:	
1. Cache	pages	=	valid	data,	but	can	be	immediately	reclaimed.	Not	

in	any	page	table	
2. Inactive	pages	=	valid	data,	but	need	some	work	to	reclaim	–	swap	

data	out	
3. Active	pages	=	data	used	by	a	process,	in	a	page	table	

ii. keep	cache	pages	(have	data	but	not	mapped)	in	a	buddy	allocator	with	
free	(totally	unused)	pages	

iii. Page	daemon	runs	when	contiguity	is	low	
1. Failure	to	allocate	region	of	requested	size	
2. Traverse	inactive	list	(pages	with	ref	bit	clear)	add	moves	caches	

adding	to	contiguity		
a. Inactive	list	is	valid	pages	but	not	in	page	table;	easier	to	

reclaim.	Can	be	dirty,	though	
b. Make	invalid	but	remember	still	exists	in	memory	
c. 	

iv. Mark	clean	pages	from	files	inactive	when	closed	(still	cached	in	memory)	
1. so	more	pages	to	take	later	for	contiguity	

b. Wired	pages:	stuck	in	memory	and	cannot	be	moved/evicted	
i. If	in	the	middle	of	a	page,	cannot	reclaim	to	form	page	
ii. SOLUTION:	cluster	in	one	place	

1. Coalesce	to	one	large	page	–	could	relocate	before	wiring/pinning	
c. Multiple	mappings:	map	a	file	in	two	processes	

i. Try	to	use	same	alignment	for	mappings	–	largest	superpage	smaller	than	
mapping	itself	

7. Issues	on	x86:	
a. Pages	are	much	larger;	chance	of	touching	all	pages	is	lower,	cost	of	reserving	

too	much	is	higher	
8. 	


