CS 736
Lecture 8
Large Page Support:

1. Motivation:
a. TLBsize limited by being in the middle of a processor, accessed on every cycle
b. Memory size limited by the amount you are willing to spend, # of physical
address bits
c. You can now buy 4TB servers,
d. PROBLEM:
i. Amount of memory a TLB can reference is small
1. 4kb * 64 entries, = 256 kb
e. QUESTION: What are some solutions?
i. Turn off virtual memory
1. Singularity, uclinux
a. need new protection mechanism
ii. Make TLBs larger and slower
1. makes common case slower
iii. Add asecond level TLB
1. Still performance/size sensitive
a. With 1024 entries, still only 4AMB
iv. Share a TLB with multiple cores
v. Prefetchinto the TLB
2. Standard solution: multiple page sizes
a. RISC machines:
i. SPARC: 8kb, 64kb, 512kb, 4mb
ii. ARM: 4kb, 64kb, 1mb, 16mb
1. Typically not hardware walked, so flexible SW structures
iii. How do page table?
1. Often copy PTEs: entries for all the pages in a large page indicate

the size
b. Intel
i. 4kb (64 entries), 2mb (32 entries), 1 gb (4 entries)
c. AMD
i. Same sizes, 32 entry L1 (fully associative), 1024-entry 8-way associative
L2
ii. Follows radix tree of page table
1. Easy for hardware walker — a level points to a page or the next
level
d. TLB design

i. Fully associative (Sun Niagara, AMD)
1. Can put any page size anywhere in TLB
ii. Split set-associative TLB

1. Have a separate TLB for each page size
2. Each TLB is set associative
iii. QUESTION: Why?
1. Not know page size, so now know which set to access in set
associative
e. QUESTION: DO LARGE PAGES ALWAYS HELP
i. Can waste memory if you don’t use all the data
ii. If have fewer TLB entries (see 1GB pages on Intel) may have more TLB
misses
iii. Expensive, inaccurate to swap.
3. OS Support possibilities
a. Use for compile/install-time known data:
i. kernel code, data
1. Linux maps physical memory into its address space using
arithmetic
2. Map whole kernel, heap on large pages
ii. Program segments in executable
1. Mark segments (code, data, etc.) with a page size
2. Must know at compile time what to do, how many pages available
on the machine in the TLB
b. Program request
i. Windows: VirtualAlloc(MEM_LARGE_PAGES)
ii. Linux: mmap(libhugetlbfs)
1. Create “virtual file” /mnt/hugepagefile
2. mmap(virtual file, memory size)
a. Reserve contriguous memory for large pages
b. Allocate and fill in on access
3. PROBLEM: What happens if a process forks()?
iii. QUESTION: Is this enough?
1. Lets big-memory programs that suffer “do the right thing”
2. Doesn’t help most programs (lost opportunity)
c. Transparent super pages/huge pages
i. Programs do the normal thing
ii. OS tries to use superpages if possible
4. INTERNAL OS Memory management
a. GOAL: Need to have contiguous memory
i. Overall: always merge contiguous blocks into “extents”
ii. Have constant-time operations via efficient data structures
1. Easily find whether neighbor is available for merging
b. PROBLEM:
i. Frequent allocation/deallocation creates fragmentation
ii. Pinned pages cannot be moved —e.g. for DMA
c. DATA STRUCTURE: Buddy heap
i. Array of lists of powers-of-2 regions

ii. Each list is sorted
iii. Coalesce neighboring buddies into next power-of-2 list
5. Implementing Transparent Super Pages
a. Reservations: on every use of a page, reserve pages around it to form a large
page
i. areservation is a data structure referencing all the extra pages, taking
them out of kernel allocator

ii. Can reclaim an unused reservation for someone else

Object
mapping //mapped pages
Virtual
address < tl] >
space A
——————"_ superpage
-mm === alignment
Physical g | boundary
address O]
space T RN
allocated . ynused - reservation

page frame page frame

Figure 2: Reservation-based allocation.
iii.
b. Options:
i. Decide at allocation time on a page size
1. promote allocations
2. Like static approach — but statically predicted by OS
3. PROBLEMS:
a. Can getit wrong and it costs a lot
ii. Decide based on references to “upgrade” or “downgrade” a page
1. If all of a large page is used, should upgrade to a large page
2. HOW?
a. Find a large page and move existing data
b. Pick pages already in the right place and get rid of existing
data and move new data in
3. VERY EXPENSIVE
iii. Prepare for upgrade on all allocations
1. Reserve adjacent pages making a large page
2. Use reserved pages on nearby faults
3. Atsome threshold, upgrade to a large page
c. POLICY: What page size should be reserved (if there are multiple)
i. Fixed-size objects (code, global data): pick:
1. largest aligned superpage that contains faulting page,
2. doesn’t overlap with other pages,

3. Fits within the object (no waste)
ii. Dynamically growing objects (stack, heap)
1. Largest aligned superpage containing faulting page
2. Not overlapping other superpages
3. Canreach beyond object, but not larger than object
a. Doesn’t waste large pages on small objects
d. PREEMPTING RESERVATIONS:
i. If not contiguous pages for new reservation:
1. can not reserve for new allocation
2. preempt existing reservation that has many unallocated frames
ii. Preferred POLICY:
1. Preempt existing reservation to create new one.
2. Pick oldest reservation (least recently allocated a page from the
reservation)
a. Give away un-used pages, but don’t remove valid data?
3. WHY?
a. Useful reservations likely to be used quickly
e. Promotions/promotions
i. Incremental: grow mapping to next available page size
1. QUESTION: Do you promote early, when 80% of base pages used,
or wait for all 100%?
2. ANSWER: Promote only at 100%
a. Common case is programs use memory early and
completely
b. Makes sense for small super pages (8!)
ii. Demotions: on page replacement
1. Replace large page with next-size smaller
2. Do recursively around victim page
3. PROBLEM: No referenced bit on individual pages
a. Cannot tell if whole superpage is used or only parts
4. SOLUTION: demote to smaller pages & get more precise
information
a. Demote superpages under pressure but NOT swap out
b. Occurs on clock hand sweep
c. Re-promote if ALL pages around base page are re-
referenced
f. Swapping dirty pages
i. QUESTION: Do you need to swap large pages?
1. ANSWER: Yes, because transparent!
ii. No dirty bit for base pages — not know what changed
1. Treat all base pages as dirty, must write all back
iii. SOLUTION:
1. Demote clean super pages on write
a. setread only, trap, demote, re-map, set dirty bit

2. Re-promote only if all base pages written

iv. ALTERNATIVE:

1. Store hash of clean page; assume if hash matches than is clean.
a. PROBLEM: Is possibility of being wrong (see VMware)
b. PROBLEM: costly to do (when under memory pressure)

g. TRACKING RESERVATIONS:

i. Problem: Lots of reservations around all pages allocated

1. Solution: keep a list per page size

2. Reservation goes on the list of the page size that can be gained by

preempting reservation

a. Sort reservations by time of last allocation — used for

preempting

b. Split reservation into largest-sized extents (not base pages)

i. Keep contiguity as long as possible
ii. SO:if need 64KB, can go to 64KB list and preempt a reservation
iii. QUESTION: What about Intel, with 1GB, 2MB, 4KB pages

1. 1GB reservations go on 2MB or 4KB list

2. 2MB reservations go on 4KB list (cannot make smaller

superpages)
h. FINDING MEMORY
i. WHY?
1. Need to find reservations on page fault
2. Detect overlapping regions

3. Have information on whether page promotions are possible

a. if all neighboring pages exist
4. Identify un-used regions for preemption
ii. Population Map:

1. Data structure: radix tree like a page table, each level is a page

size

(somepop, fullpop) T ,0

31
HN

25

4,4

: 2,1
[[]

|

Y

N

AR |
[T [[ffju\luumur

Figure 3: A population map. At the base page level, the actual

allocation of pages is shown.
2.
3. Contents:

Q

Number of entries at next level that are full (fullpop)
b. Number of entries at next level that are non-zero but not
full (2 levels smaller at least)
4. USE:
a. Find allocation for a page:
i. walk down tree to find reserved frame
b. Overlap avoidance:
i. walk down until “somepop” is zero
c. Promotion:
i. If fullpop goes from R-1 to R (fill)
6. IMPLEMENTATION ISSUES:
a. Swapping: want contiguity awareness in swapping
i. FreeBSD background:
1. Cache pages = valid data, but can be immediately reclaimed. Not
in any page table
2. Inactive pages = valid data, but need some work to reclaim — swap
data out
3. Active pages = data used by a process, in a page table
ii. keep cache pages (have data but not mapped) in a buddy allocator with
free (totally unused) pages
iii. Page daemon runs when contiguity is low
1. Failure to allocate region of requested size
2. Traverse inactive list (pages with ref bit clear) add moves caches
adding to contiguity
a. Inactive list is valid pages but not in page table; easier to
reclaim. Can be dirty, though
b. Make invalid but remember still exists in memory
C.
iv. Mark clean pages from files inactive when closed (still cached in memory)
1. so more pages to take later for contiguity
b. Wired pages: stuck in memory and cannot be moved/evicted
i. Ifinthe middle of a page, cannot reclaim to form page
ii. SOLUTION: cluster in one place
1. Coalesce to one large page — could relocate before wiring/pinning
c. Multiple mappings: map a file in two processes
i. Tryto use same alignment for mappings — largest superpage smaller than
mapping itself
7. lIssues on x86:
a. Pages are much larger; chance of touching all pages is lower, cost of reserving
too much is higher

