
RPC

1. Group presentation
2. Notes from reviews:

a.
3. Notes to discuss:

a. Interface definition: can you just use header files?
i. Separate language or integrate into source?
ii. Stub compiler or normal compiler?

b. Complex arguments: pointer-based structures?
i. Can marshall by following ptr?
ii. How know about C arrays?

c. Soft state / Stateless import
d. Optimizing common case – round trips, short messages,

short execution
e. Focus on low latency
f. Synchronous calls
g. Considerations:

i. Few packets
ii. Little memory
iii. Simple implementation – e.g. ack strategy. Never send

spontaneously; only when have data to send or asked
for one

h. Error handling -
4. Notes from Creator:

a. RPC: Andrew Birrell
i. Were lucky to be 5 years ahead of everybody else in

having a LAN of person computers
1. Most people were using time sharing on a

minicomputer
2. Predates IBM PC, MacIntosh
3. PCs were apple – 1 MHz 8 bit processors

ii. Got so solve lots of interesting problems
iii. Design still holds up

5. Debate:
a. What is RPC?

i. Synchronous calls over a network?
ii. Concealing network interaction to make remote

operations look local
iii. Sending/receiving complex data structures, invoking a

routine on the other side
b. Problems:

i. Hiding the network – it is different, programmers need
to know

ii. Too low level: method-level interactions rather than
semantic/business level

iii. Hard to extend – add new parameters, new functions
6. Context

a. Xerox Parc
b. Birth of local area networks, distributed computing
c. Used with Mesa; lightweight processes in shared memory

i. Creating a thread (calleda process)30x slower than a
procedure call

d. What kinds of things were being remoted?
i. Deliver email message, receive email message
ii. Lookup name/address of something
iii. Generally not for parallelism (e.g. offloading

computation), but for sharing state (e.g. shared data
across many workstations).

e. They were building RPC for their own use; not trying to solve
all potential problems in distributed communications.

7. Problem
a. QUESTON: What problem were they solving?

i. Distributed programming
1. QUESTION: why important? improve performance

by distributed code to different machines
ii. Hard to write distributed programs using messages

1. Like writing in ASM

2.

Writing it by hand...
• eg, if you had to write a, say, password cracker

struct foomsg {
 u_int32_t len;
}

send_foo(char *contents) {
 int msglen = sizeof(struct foomsg) + strlen(contents);
 char buf = malloc(msglen);
 struct foomsg *fm = (struct foomsg *)buf;
 fm->len = htonl(strlen(contents));
 memcpy(buf + sizeof(struct foomsg),
 contents,
 strlen(contents));
 write(outsock, buf, msglen);
}

Then wait for response, etc.

RPC

• A type of client/server communication

• Attempts to make remote procedure calls
look like local ones

figure from Microsoft MSDN

{ ...
 foo()
}
void foo() {
 invoke_remote_foo()
}

RPC Goals

• Ease of programming

• Hide complexity (we’ll get to next)

• automate a lot of task of implementing

• Familiar model for programmers (just make
a function call)

Historical note: Seems obvious in retrospect, but RPC was only invented in the ‘80s. See
Birrell & Nelson, “Implementing Remote Procedure Call” ... or
Bruce Nelson, Ph.D. Thesis, Carnegie Mellon University: Remote Procedure Call., 1981 :)

But it’s not always
simple

• Calling and called procedures run on different
machines, with different address spaces

• And perhaps different environments .. or
operating systems ..

• Must convert to local representation of data

• Machines and network can fail

3. Everybody sets their own timeouts, retry

mechanisms
4. Example: Amazon; everybody did linear backoff

a. Under overload, whole network collapsed
iii. How do you make an efficient high-level

communication mechanism?
1. Similar to using compiler instead of ASM, or

scripting language instead of C
iv. Target environment: local area network, closely-

coupled computation, generally reliable
8. Goal:

a. QUESTION: What was goal for this work?

i. Find the right paradigm for distributed computing
ii. Fine-tune the semantics

1. Make it as powerful as possible so don’t need to
layer mechanism above it

iii. Implementation choices for efficiency
b. NOTE: want to let programmers reason about performance

(unlike shared memory)
9. Rejected ideas

a. Remote fork – launch remote program that returns values
i. Still has problems of data & argument passing

b. Distributed shared memory
i. Difficult to make fast
ii. Hard to program – memory classes not exposed in

language
10. QUESTION: Why RPC?
11.

a. Review procedure call:
i. save current state on stack (e.g caller-save registers)
ii. push arguments on stack (scalar values or pointers to

shared memory)
iii. transfer control to destination procedure
iv. Destination procedure allocates local space for

temporary variables
v. Destination executes code
vi. Destination returns value through a register
vii. Destination returns control by restoring old program

counter
viii. Caller resumes control, looks at return value or

modifications to input parameters
b. Note: data transfer happens through passing scalar

values/pointers on stack, and passing data structures by
reference through memory

c. Note: control transfer happens by suspending calling thread
before call & resuming afterwards. In the middle, assuming a
single-threaded system, calling thread doesn’t see
intermediate changes to values because it is suspended, so it
can’t tell difference between call-by-reference and call-by-
value-result (send values by copy, receive results and copy
back)

d.

Writing it by hand...
• eg, if you had to write a, say, password cracker

struct foomsg {
 u_int32_t len;
}

send_foo(char *contents) {
 int msglen = sizeof(struct foomsg) + strlen(contents);
 char buf = malloc(msglen);
 struct foomsg *fm = (struct foomsg *)buf;
 fm->len = htonl(strlen(contents));
 memcpy(buf + sizeof(struct foomsg),
 contents,
 strlen(contents));
 write(outsock, buf, msglen);
}

Then wait for response, etc.

RPC

• A type of client/server communication

• Attempts to make remote procedure calls
look like local ones

figure from Microsoft MSDN

{ ...
 foo()
}
void foo() {
 invoke_remote_foo()
}

RPC Goals

• Ease of programming

• Hide complexity (we’ll get to next)

• automate a lot of task of implementing

• Familiar model for programmers (just make
a function call)

Historical note: Seems obvious in retrospect, but RPC was only invented in the ‘80s. See
Birrell & Nelson, “Implementing Remote Procedure Call” ... or
Bruce Nelson, Ph.D. Thesis, Carnegie Mellon University: Remote Procedure Call., 1981 :)

But it’s not always
simple

• Calling and called procedures run on different
machines, with different address spaces

• And perhaps different environments .. or
operating systems ..

• Must convert to local representation of data

• Machines and network can fail

e. USE FOR REMOTE COMMUNICATION:

i. Clean, simple semantics
ii. Well understood to programmers
iii. Commonly used already for structuring programs
iv. QUESTION: Why only synchronous communication?

1. Is the common case
2. Can use fork/join for asynchronous

communication
12. Big picture

13.

44 • A .D . Birrell and B. J. Nelson

Caller machine Network Callee machine

User User-stub RPCRuntime

importer exporter

interface

transmit

,5
wait

,5
receive

Call packet

/ Result packet

RPCRuntime Server-stub Server

receive ~ i r--nt
lr,,um

importer exporter

interface

transmit

Fig. 1. The components of the system, and their interactions for a simple call.

invoked the procedure in the server directly. Indeed, if the user and server code
were brought into a single machine and bound directly together without the
stubs, the program would still work.

RPCRuntime is a standard part of the Cedar system. The user and server are
written as part of the distributed application. But the user-stub and server-stub
are automatically generated, by a program called Lupine. This generation is
specified by use of Mesa interface modules. These are the basis of the Mesa (and
Cedar) separate compilation and binding mechanism [9]. An interface module is
mainly a list of procedure names, together with the types of their arguments and
results. This is sufficient information for the caller and callee to independently
perform compile-time type checking and to generate appropriate calling se-
quences. A program module that implements procedures in an interface is said to
export that interface. A program module calling procedures from an interface is
said to import that interface. When writing a distributed application, a program-
mer first writes an interface module. Then he can write the user code that imports
that interface and the server code that exports the interface. He also presents
the interface to Lupine, which generates the user-stub, (that exports the interface)
and the server-stub {that imports the interface). When binding the programs on
the 'caller machine, the user is bound to the user-stub. On the callee machine,
the server-stub is bound to the server.

Thus, the programmer does not need to build detailed communication-related
code. After designing the interface, he need only write the user and server code.
Lupine is responsible for generating the code for packing and unpacking argu-
ments and results (and other details of parameter/result semantics), and for
dispatching to the correct procedure for an incoming call in the server-stub.
RPCRuntime is responsible for packet-level communications. The programmer
must avoid specifying arguments or results that are incompatible with the lack
of shared address space. (Lupine checks this avoidance.) The programmer must
also take steps to invoke the intermachine binding described in Section 2, and to
handle reported machine or communication failures.

2. BINDING
There are two aspects to binding which we consider in turn. First, how does a
client of the binding mechanism specify what he wants to be bound to? Second,
ACM Transactions on Computer Systems, Vol. 2, No. 1, February 1984

a. Show how RPC works

i. Client, client stub, runtime, server stub, server
ii. Name server
iii. IDL compiler - Lupine

14. Questions to solve
a. What should failures semantics be?
b. How do you handle pointer-based data structures?

i. Don’t allow
ii. Marshall automatically

c. NEED programming language integration to make it look
local

d. How do you identify the target of a call?
e. What protocols should be used? Where in the stack should

you sit (e.g. Ethernet, ip, udp, tcp)
15. Principles

a. Make RPC as much like procedure call as possible

i. No time-outs
1. Question: Why?
2. Answer: how do you set timeouts? How do you

specify them? What do you do on a timeout?
3. Answer: most people put the call in a loop and

try it again. Generally, not the right thing; most
people choose the wrong value for a timeout
(from experience, 6 seconds is way too long)

ii. Return communication failures as exceptional
conditions

1. QUESTION: What does this mean for RPC
packages in C?

a. New error parameter?
b. Return a pointer to the return value or

NULL?
2. QUESTION: how does this impact programming?

a. New failure modes
b. Depends on whether programmers already

handle exceptions
3. QUESTION: What should a program do on failure?

iii. No asynchronous RPC
1. Question: Why?

a. A: not RPC
b. A: can achieve by forking a thread
c. A: allows multiple outstanding calls per

client process; complicates protocol
d. A: not simple; not even a solved problem

within a single process
iv. NOTE: google RPC

1. Allows streamed RPC – send a sequence of
requests with one response, or vice versa.

2. Basically means you don’t need all the data when
you make the call, can keep generating it over
time

16. Stubs
a. Automatically generated

i. QUESTION: From where?
1. Source code?
2. Interface definition?

b. Look like normal procedure to client; hides distribution
c. Runtime can hide architectural differences

i. Convert between endian-ness
ii. Convert between pointer sizes
iii. HOW?

1. Option 1: send in sender format, convert on
receiver if necessary (and indicate in packet)

2. Option 2: convert to a canonical format for wire
d. Better: an Interface Compiler

i. Specify the functions in your interface
ii. Specify the types in your interface in sufficient detail

to send them
iii. E.g. C: char * x; Is it a pointer to single character? A

null-terminate string? A counted array?
iv. In this system, use existing Mesa interfaces that do

this job. Typically, have to write separately from C, but
can re-use C header files for types.

v. Can generate stubs in multiple languages (sometimes)
e. How do you return errors?

i. What if the server fails while processing a call, or the
network gets unplugged?

ii. QUESTION: can you return an error?
1. Answer: not; not all calls return an error
2. Answer: no; error returns from a function already

defined by application
3. SO?

a. In Mesa; throw an exception
b. In C:

i. Throw an exception (if you have
fancy C)

ii. Change interface to take an
additional out parameter

1. For return value
2. For RPC error code

17. Binding
a. QUESTION: What is binding?

i. How do you do binding in a local program?
1. C: function pointer assignment, link time
2. C++: inheritance – run time/compile time

b. How do you specify someone to talk to?
i. Naming:

1. type (interface name)
a. What service is provided? Email, http, ssh?

2. instance (host name / service name for
replicated services)

a. Specific or one of a set of identical services
3. Names

a. Groups: a list of individual names
i. Good for a set of replicas

1. E.g. I want some mail server

b. Individuals: specific host address/port
number

i. E.g. I want a specific printer
ii. QUESTION: What do you want from naming?

1. Security: should be able to say who is part of a
group

a. I can’t set up mail server, but I can set up
a game server

2. Human readable: so can type in?
c. How do you find someone that meets that specification

i. Contact a name service:
1. Grapevine

a. Entry for each type
i. Lists instances of the type

b. Entry for each instance
i. Addressing information for host

c. QUETSION: What about DNS?
i. DNS for mail services
ii. LDAP in Windows

2. QUESTION: is it reasonable to have such a
database?

a. Context: LAN
d. How do you announce that you provide a service?

i. ExportInterface registers information with grapevine
automatically when server starts up

ii. RPC runtime maintains a table mapping interface name
to dispatch procedure & 32 bit instance/incarnation
identifier (changes after reboot)

iii. QUESTION: Does time have to be synchronized across
machines?

1. ANSWER: No, time is used locally as a per-
machine unique ID across reboots. Read once at
reboot; then increment counter and assume that
by next reboot, time will be > counter value
before reboot.

iv. QUESTION: How handle reboots
e. What do you do to initiate a conversation?

i. ImportInterface asks grapevine for addressing
information (or uses provided name/address)

1. When several available, client runtime gets all
2. Client tries them in useful order to establish

service is running
ii. Runtime on client deos RPC to server to receive binding

association (unique identifier/incarnation number)
1. NOTE: verify during binding, not during call

2. Gets index into per-server table
a. Fast lookup for that server + a check (so if

table changes later, will detect)
f. ISSUES:

i. Binding does not create state on server à scalable
ii. Bindings broken when server crashes à automatically

informs client
iii. Access controls

1. Who should be able to export an interface?
a. What about dept. imap?
b. on grapevine limits who can register an

interface
2. QUESTION: Should it limit who can import?

a. Can learn of imports other ways, e.g. port
scanning

iv. Early vs late:
1. Early = before you need it; could be embedding

an Ethernet / ip address / dns name in code
2. Late == as late as possible; could be as late as

on every packet (e.g. broadcast)
3. Which has better reliability implications?

g. DESIGN CONCERNS:
i. Priniple: Soft state: state on server can be discarded; is

just an optimization
ii. Minimal memory consumption -> allows to scale to

more clients
18. Protocol Implementation

a. QUESTION: What are goals:
i. Minimize latency of calls
ii. Minimize state needed on server for handling many

clients - throughput
iii. Provide useful semantics:

1. Exactly once
a. QUESTION: How?

b.

Exactly-Once?

• Sorry - no can do in general.

• Imagine that message triggers an external
physical thing (say, a robot fires a nerf dart
at the professor)

• The robot could crash immediately before
or after firing and lose its state. Don’t
know which one happened. Can, however,
make this window very small.

Implementation
Concerns

• As a general library, performance is often a big concern for RPC
systems

• Major source of overhead: copies and marshaling/unmarshaling
overhead

• Zero-copy tricks:

• Representation: Send on the wire in native format and indicate
that format with a bit/byte beforehand. What does this do?
Think about sending uint32 between two little-endian machines

• Scatter-gather writes (writev() and friends)

Dealing with Environmental
Differences

• If my function does: read(foo, ...)

• Can I make it look like it was really a local procedure
call??

• Maybe!

• Distributed filesystem...

• But what about address space?

• This is called distributed shared memory

• People have kind of given up on it - it turns out
often better to admit that you’re doing things
remotely

Complex / Pointer
Data Structures

• Very few low-level RPC systems support

• C is messy about things like that -- can’t always
understand the structure and know where to stop
chasing

• One way was to send pointers and use DSM, but ...

• Java RMI (and many other higher-level languages)
allows sending objects as part of an RPC

• But be careful - don’t want to send megabytes of
data across network to ask simple question!

2. At least once: call may execute more than once

(e.g. must be idempotent).

a. Example: set back account value to 100
b. Not example: add $10 to bank account
c. How? Just keep retrying until succeeds

3. At most once: call executes no more than once

a. On success, exactly one execution
b. On exception, zero or one execution

i. QUESTION: Why? Impossibility result
c. No timeouts

i. QUESTION: Good? Bad? What is user
experience?

d. How implement?
i. Server has to remember previous

requests and not re-execute, just
resesnd reply

iv. QUESTION: what is the right choice?
1. At most once allows non-idempotent operations
2. At most once is responsive, because you can

return an error to application quickly (after first
failure), and let application retry.

3. At most once is like a normal procedure call.	
a. Don’t know where it failed…	

b. Solution:
i. Principle: Optimize for common case:

1. Request & reply happen in a single packet
2. Reply takes less than a roundtrip of computation

ii. Piggyback ack’s on subsequent packet
iii. Leverage protocol properties

1. Only one outstanding request per client on an
interface à no sliding window

2. Not need to establish connection; server just
remembers highest # request from client to
detect duplicates

3. Sender of data packet resends until ACKd, by
next call or explicit (if call takes longer)

iv. Handle complex case simply
1. Multiple-packet request/reply explicitly ACK

every non-terminating packet before sending
next packet

a. Only last packet must be buffered on
either side

b. Use other protocols for bulk transfer
v. Detect failure: no ACK in response

1. Client re-sends request periodically to ensure
server alive

a. Server detects as duplicate and ignores
b. Network notifies sender if server isn’t

running or not listening on port (e.g.
failed)

2. QUESTION: How deliver?
a. Cannot just return an error code (that

comes from the procedure)
b. Raise exception instead

3.
c. QUESTION: Why not use TCP/IP?

i. A: didn’t really exist yet, not in wide use
ii. A: requires 3 packets to set up a connection, more

packets to send/receive data; stream approach doesn’t
match RPC request/reply that well.

iii.
d. Avoid expensive process creation for handling requests

i. Server uses separate process / concurrent request (no
threads)

1. Processes really are threads (sharing an address
space)

ii. Creates pool of processes to avoid expensive creation
cost on call

iii. Hints to client what process to request to use same
process for all requests in a conversation

1. QUESTION: What are the implications? Each call
independent? No state across calls? Servers must
share shared dynamic state across processes?

19. Evaluation
a. QUESTION: what should be evaluated?

i. Complexity of using system
ii. Amount of code to solve a problem
iii. Fault tolerance
iv. Latency
v. Scalability / throughput / simultaneous clients

b. QUESTION: what is evaluated?
i. Performance of calls relative to procedure call and

messaging latency
ii. What about compared to bare message passing?

20. Repeated themes in the design of RPC
a. layer of indirection

i. used to insert remote into a procedure call
ii. used in naming to indirect from a group to an

individual
1. allows locality or performance-based server

selection

b. Early binding:
i. Make binding before making RPC

1. Can detect errors
2. Can select correct one
3. Can amortize cost of binding

c. Late binding: through names, group names
i. Can change which server you talk to
ii. Can change which instance of a replicated service

d. Piggy backing
i. Re-use existing message to send another one;

1. ACK on reply message
e. Stateless server

i. No per-client state in RPC runtime on server
ii. Allows server to crash & recover without worrying

about clients
iii. Clients have to detect failure
iv. Better scalability, more complicated clients
v.

f. Soft state
i. Server can discard connection state after an idle

period; can be reconstructed on next call
g. Caching

i. Idle server processes
ii. Put PID in packet to help speed dispatch if process is

waiting. Allows locality of using the same server
process repeatedly.

21. Commentary
a. RPC useful technique for loosely coupled distributed systems
b. Performance can be made quite high with optimized

runtimes (see next week)
c. Failure semantics cause problems; callers often not prepared

to deal well with failure
i. QUESTION: What should you do on failure? Retry ? How

many times? How long should you wait?
d. Makes it almost as easy to build a system of proceses as one

of a single process
e. Basis for distributed object systems like DCOM and RMI and

XML-RPC
f. Problems

i. Procedure call level may be too low; message formats
for internet protocols may encourage better separation
between code and protocol

ii. Encourages synchronous round trips; hard to batch
requests that can be overlapped

iii. Difficult to revise interfaces; is handled but leads to
ugly code on server

iv. Generally language specific

