
LRPC

1. Reading group presentation
a. Anubhavnidhi
b. Tithy
c. VINOTHKUMAR

2. Questions from reviews
a. What about security?

i. Answer: locally not need encryption etc.; kernel guarantees
who client is

b. How evaluate security?
i. Good question!

c. Why copy arguments at all with shared memory?
d. What is need for RPC if most have small arguments?

i. RPC is much more than marshaling
3. Why use RPC for structuring a system

a. Easy to use compared to alternatives – compiler handles most of
details

b. Easy to build a protected subsystem
c. Allows moving components out of kernel if fast enough

i. E.g. singularity, Minix, Mach
d. Compared to Opal Portals:

i. Portals are a protection mechanism indicating who can call
what (not mentioned in LRPC),

ii. Very similar mechanisms (same advisor)
e. More reliable
f. Easier to extend
g. Faster RPC makes it possible to structure systems differently;

brings up issue of evaluating new capabilities
h. QUESTION: Are these good reasons?

i. Do people using RPC intend to later migrate it off machine,
so it is only local temporarily?

i. Examples:
i. Cross-frame communication in a browser
ii. Local DNS resolver
iii. Windows service controller, services
iv. Programmability layer on top of unix domain sockets

j. QUESTION: When is RPC not a good mechanism for this?
i. If want to integrate communication into an event loop (e.g.

interactive applications), may want to poll for messages on a
socket/pipe (select)

4. Overview

a. General approach:
i. Analyze a system
ii. Find an untapped opportunity; some common behavior that

can be optimized
1. E.g. small arguments
2. Fixed size arguments
3. Unstructed arguments (e.g. buffers vs. types needing

marshalling)
4. Unnecessary optimizations (e.g. copying data)

iii. Measure overhead that you could remove; best case
performance

iv. Build an optimized version that takes advantage of the
opportunity

v. Go on to fame and fortune
vi. QUESTION: other examples?

1. Flash memory
2. Web servers: create “sendfile” api, changing how

networking works
b. Opportunities

i. RPC used for structuring systems:
1. Client / server (e.g. Windows services, name server)
2. NFS file server – used for sending requests to server
3. Common implementation:

a. Separate out stubs from communication
b. Build on existing protocol: pipes, tcp/ip/udp

ii. QUESTION: they don’t profile RPC to show where it slow,
and optimize those parts. Is this important

1.
iii. Common case is not remote / large arguments

1. Common case is local calls when used in systems
with micro-kernels (1-6%)

2. Common case is small, fixed-size arguments
a. 60% were < 32 bytes
b. 80% of arguments fixed size at compile time
c. 2/3 procedures have fixed-size arguments

c. QUESTIONS: how legitimate is this study? Look both at existing
microkernel systems + future use (e.g. system calls)

i. Note: look at system without RPC where RPC could have
been used (V messages, Unix system calls)

d. QUESTION: why not look at socket applications? Could look at
domain sockets (local sockets). Internet applications relying on
RFCs aren’t going to convert to RPC

5. How LRPC works
a. Big approach:

i. Look at minimum time of things that have to happen
1. One procedure call

2. Trap to kernel
3. Process context switch (change address space)
4. Return from Trap in server
5. Trap to return
6. Process context switch to client
7. Return from trap

ii. Everything else is overhead!
b. Approach

i. Do everything in advance
1. e.g. allocating stacks
2. e.g. setting up dispatch (no dynamic dispatch in

server)
ii. Remove unnecessary copies

1. Memory copies huge cause of performance problems
iii. Break operation into constituent parts, optimize or remove

each
1. Stub overhead – convert procedure call into message

passing; marshall arguments, wait for result
2. Message buffer overhead – allocating buffers,

copying data between domains
3. Access validation – validate sender’s identity on call

and return
4. Message transfer – enqueue/dequeue message, flow

control
5. Scheduling – put client to sleep, wake up server,

access system’s run queue
6. Context switch – change page tables
7. Dispatch – server must interpret message, parse

arguments, call destination routine
iv.

c. Doing things in advance
i. Bind

1. Clerk thread in server listens to binding calls and
accepts them

2. Create procedure description list with each exported
procedure (address, size of args)

3. Allocate shared a-stacks and corresponding linkage
records (for caller’s return address) for each
procedure. JUST FOR CLIENT

a. QUESTION: Why allocate stacks for all
procedures?

i. ANSWER: want contiguity for easy
range checking

b. QUESTION: how many should be allocated?
i. ANSWER: # of concurrent clients.
ii. Why default to 5?

iii. ANSWER: Had a 6 processor machine
4. Return binding object to client runtime to identify

binding
5. KEY POINT: binding object contains server function

address – no need for dispatch in server
a. Note: is like a file object

ii. Call
1. QUESTION: How do they know if call is local or

remote?
a. A: at bind time, cache a bit of information

2. QUESTION: What is the cost?
a. A: can be one test & procedure call at the

beginning of every stub; already included in
local stub cost as shown. Overhead on real
RPC would be almost zero given cost of
network.

d. Copy avoidance
i. Client stub grabs A-stack off queue (managed in stub)
ii. Push arguments on A-stack

1. No separate copy to kernel; copies directly to server
iii. Pass a-stack, binding object, procedure identifier in registers

to kernel
iv. Kernel

1. Verify binding, procedure identifier
2. Locates procedure description
3. Verify A-stack & locate linkage for A-stack
4. Verify ownership of A-stack
5. Record caller’s return address in linkage (means

return address stack)
6. Push linkage onto thread (so can nest calls)
7. Find execution stack (e-stack) for server to execute

(from pool)
a. NOTE: e-stack is like a normal stack, private to

server for local variables
b. QUESTION: When? Can do on demand (avoid

wasting stacks), or in advance.
i. LRPC: on demand first time, then

remember association
8. Update thread to point at E-stack
9. Change processor address space
10. Call into server stub at address in PD

a. Writes return value back to A-stack
b. Kernel knows what to do when call returns

v. Notes:
1. Avoids runtime: client and server interact with kernel

directly

2. One copy – from client to A-stack
3. Can use separate argument stack because language

supports in, C would need to copy arguments to E
stack

a. What else could you do? Put a-stack/e-stack
on attached pages

4. By-reference objects are copied to A stack by client
stub

a. PRINCIPLE: client does copying work
b. PRINCIPLE: client stub does work, kernel

verifies (e.g. choose A-stack)
c. QUESTION: What are alternatives to having

client stub do copying?
d. Server stub must create pointer to A-stack data

on E stack
5. What about thread-local storage in server? Or thread-

init routines for DLLs?
vi. QUESTION: What about writing with shared memory?

1. A: no isolation
vii. NOTE: server does not create threads; it just creates stacks

and reuses client threads
1. Needs bookkeeping: if RPC thread makes a system

call, must create/access objects of server not client
process

2.
e. Writing stubs

i. Generated in ASM from source
1. First instruction determines local/remote binding for

uncommon case
ii. Modula 2 code generated automatically for complex pointer-

based data structures
f. Optimizations – multiprocessor

i. Cache processors running in a protection domain
1. Page table already pointing correctly, TLB already

has right contents
2. Like pipe between two processes on same core vs

different cores: cache coherence vs TLB misses
ii. Do handoff scheduling on call

1. Client thread migrates to target processor in servers
domain

2. Servers thread takes over client processor
a. QUESTION:why?

i. Avoids needing to queue the server
thread

3. Ensure conservation of processors; doesn’t impact
kernel processor scheduling much

iii.
g. Copying Safety

i. Normal RPC makes copy of arguments
1. Many times – up to 4 times

ii. QUESTION: What is benefit?
1. Ensures COW semantics; client changes can’t corrupt

server
iii. LRPC uses shared stacks accessible to both processes

1. Client can overwrite A-stack while server access it
iv. Solution:

1. Server can copy/verify data only if needed
2. Destination address for return values private to client;

no benefit in having kernel, not server, write to it
a. Q: what would effect of doing it wrong be?
b. A: returning incorrect value

3. Not needed for opaque (e.g. buffers) parameters
4. More efficient to have stubs to copying than kernel

a. Server can integrate validity checks with
copying

5. Adds at most one extra copy (on top of initial 1)
6. COMMENT: More like a system call, where kernel

validates parameters
7. ISSUE: Complicates server; not transparent

v. QUESTION: What does this mean for safety/security?
h. Reliability

i. What if server crashes?
1. Thread stopped, returns to previous caller

ii. Client crashes?
1. On return, skip failed processes or terminate thread if

is ultimate client
iii. What do you do if a server thread hangs?

1. Question: what is the key problem?
a. A: client thread has been taken over for the

server, can’t just timeout because server is
actively using it

2. Solution: duplicate client thread state into a new
thread

a. Can also do this based on timeout
iv. What if a client process crashes?

1. Mark linkage as dead, so when server thread returns,
it just terminates

6. Evaluation:
a. Comments: good evaluation explains why the performance is

better, doesn’t just show it is better
b. Example: was on a PC meeting, one paper showed a 100x

speedup. But, didn’t explain it. PC felt that they didn’t understand

the system, because the code they explained didn’t justify a 100x
increase. Result: paper dinged

i. In this paper: didn’t which pieces of RPC were bad
ii. Showing the minimum possible gets around this from the

other direction
7. Commentary

a. Limitations:
i. Assumes no per-thread application state
ii. Relies on argument stack pointer to avoid copying /

changing protection on execution stack
b. Idea used in Windows NT

i. Dave Cutler drove from MS over to UWash for a meeting
ii. Windows version different

1. No shared stacks
2. Pre-allocated shared memory if large objects needed
3. Handoff scheduling for low latency
4. Still have to copy messages many times

a. Into user-mode message
b. Directly from client buffer to server buffer
c. Onto server stack

5. Quick LPC:
a. Dedicated server thread
b. Dedicated shared memory with server thread
c. Event pair for signaling message arriving /

reply arriving
c. How important is fast IPC?

i. Systems are never fast enough
ii. If code called frequently, always the temptation to move

code into the kernel
8. Performance Techniques

a. Early binding
b. Pre-allocation, pre-association
c. Migrating threads
d. Make kernel/server to verification only, not the work.

i. E.g. choosing an A stack

