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2.  
3. Questions 

a. How apply to disk schedulers? 
b. How important is throughput 
c. Relationship to fair-share scheduling? 
d. Scale to multicore & distributed systems? 
e. How extend to multiple resources? 

i. Can choose where to use tickets – stop using CPU, use 
for disk bandwidth. Can split tickets – some for CPU, 
some for disk 

ii. If have per-resource tickets, Can trade tickets with 
other applications – give tickets for disk in exchange 
for tickets for CPU 

4. Review of normal schedulers – multi-level feedback queue (Unix, 
Windows) 

a. N priorities, each with a ready queue 
b. Execute at level N if level N+1 and higher empty 
c. Threads can be assigned an initial priority 
d. Threads can move between queues 

i. Priority lowered if exhausts quantum 
ii. Priority raised if sleeps early / when woken up from 

sleep 
iii. Quantum shorter for higher-priority queues 
iv. Quantum longer for lower-priority queues 
v. Priority raised if have been pre-empted before full 

quantum 
e. Issues: 

i. System knows nothing about users 
ii. Scheduling done based on processes 

1. Gives more share to users with more 
processes 

iii. Only mechanism for limiting consumption are quotas / 
charging 



iv. Starvation: if high priorities are busy, low priority 
starves 

v. Hard to transfer priority to thread being waited on; if 
two threads are waiting, does it get double priority? 

vi. Hard to control quality for multimedia – may need 20% 
of CPU to decode smoothly 

5. Goal: proportional share scheduling 
a. Share according to users / higher-level groups, not 

processes 
i. N users want something 
ii. Each gets 1/N 
iii. Easy (relatively) for evenly weighted 
iv. What if want more flexible distribution of weights? 

b. Want to handle case where not all are active; if n/2 are active, 
each process gets 1/n/2 

6. QUESTIONS: 
a. When do you want proportional share? 

i. Good for throughput-oriented systems 
ii. Good for equal-priority applications to ensure get 

equal access to CPU 
iii. Can guarantee quality-of-service 

b. What is needed? 
i. Someone has to assign shares 
ii. Default: everybody gets the same amount 

c. How many clients? 
d. What properties do you want? 

i. Timeliness 
7. Lottery scheduling ideas 

a. Biggest idea: Tickets/shares 
i. Resource rights are abstract 

1. Independent of machine details 
2. Not tied to cpu cyles, memory pages 

ii. Uniform rights 
1. Can apply to heterogeneous pool of resources 

(but may need a conversion factor) 
iii. Can be allocated/ transferred like memory 

b. Second idea: proportional share is a useful idea 
i. Gives access to resources independent of how program 

works 
1. E.g. 1 thread or 1000 threads if share tickets 

ii. Compare to normal scheduling: 
1. Low predictability of how much time a process 

gets 
a. Based on interactivity/batch, priority 



b. Can reason about relative priority (who 
runs next) but not total run time s 

c. Third idea: economic models for resource allocation 
i. Example: inflation, deflation, currencies 
ii. Auctions – bid how much resources needed (how 

valuable a resource is) 
1. Give to the program that benefits the most (and 

has enough money to spend) 
d. Fourth idea: randomness/Lotteries for making choice 

i. Each client gets some number of tickets 
ii. Chance of winning = # of tickets / # of tickets 

contending 
iii. Why good? 

1. Fast – doesn’t need much state (e.g. tracking 
execution time) 

2. Hard to game – randomness makes it hard to 
predict what will happen 

e. Randomness for making decision 
i. Randomly pick a process at each time 
ii. Converges with sqrt(# lotteries) 
iii. Expected time to win is 1/p (p = proportion) 
iv.  

f. NOTE: most of system works just fine if lotteries are not 
random, but deterministically pick a schedule to run 
threads that follows the allocation 

g. Implementation 
i. Hold lotteries in base units (== sum of base tickets for 

ready processes) 
ii. Scan ready list accumulating partial sum until hit 

process 
iii. Move large ticket holders to front to minimize average 

scan length 
iv. Optimizations: tree with partial sums 

h. NOTE: lottery implementation is not used; randomness hard 
to reason about. instead, strides: 

i. let thread run, compute next run time as 1/fraction 
tickets = stride. Always run earliest thread 

ii. Example: 



i.  
j. When a client consumes fraction F of its allocated time 

quantum, its pass should be advanced by F x stride instead 
of stride. 

i. When rescheduled, pass value will be lower, will be 
scheduled early 

1. Oldest waking thread runs first  
k. QUESTION: Tickets don’t get consumed. Why? 

8. General ideas: 
a. Randomness 
b. Lotteries 
c. Currencies – conversion between resources (e.g. i/o 

bandwidth, memory, cpu) or users 
9. Extensions 

a. Ticket inflation: mint more tickets in a currency 
i. QUESTION: Who should be able to do this? 

1. If have N processes, should all of them? 
b. Ticket transfers 

i. Move tickets from one client to another 
ii. E.g. rpc client gives to rpc server 
iii. Lock waiter give to lock holder 

c. Currency 
i. QUESTION: What problem does it solve? 
ii. System provides base tickets 
iii. Clients can issue tickets denominated in their own 

currency 
iv. Allows dividing resources. 
v. Easy to have all children have equal shares 
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Figure 2: Stride Scheduling Example. Clients (trian-
gles), (circles), and (squares) have a 3 : 2 : 1 ticket ratio.
In this example, stride = 6, yielding respective strides of 2,
3, and 6. For each quantum, the client with the minimum pass
value is selected, and its pass is advanced by its stride.

broken using the arbitrary but consistent client ordering
, , .

2.2 Dynamic Client Participation

The algorithm presented in Figure 1 does not support
dynamic changes in the number of clients competing for
a resource. When clients are allowed to join and leave
at any time, their state must be appropriately modified.
Figure 3 extends the basic algorithm to efficiently handle
dynamic changes.
A key extension is the addition of global variables

that maintain aggregate information about the set of ac-
tive clients. The global tickets variable contains the
total ticket sum for all active clients. The global pass
variable maintains the “current” pass for the scheduler.
The global pass advances at the rate of global stride per
quantum, where global stride = stride / global tickets.
Conceptually, the global pass continuously advances at
a smooth rate. This is implemented by invoking the
global pass update() routine whenever the global pass
value is needed.

Due to the use of a fixed-point integer representation for
strides, small quantization errors may accumulate slowly, causing

A state variable is also associated with each client
to store the remaining portion of its stride when a dy-
namic change occurs. The remain field represents the
number of passes that are left before a client’s next se-
lection. When a client leaves the system, remain is
computed as the difference between the client’s pass
and the global pass. When a client rejoins the system,
its pass value is recomputed by adding its remain value
to the global pass.
This mechanism handles situations involving either

positive or negative error between the specified and ac-
tual number of allocations. If remain stride, then
the client is effectively given credit when it rejoins for
having previously waited for part of its stride without
receiving a quantum. If remain stride, then the client
is effectively penalized when it rejoins for having previ-
ously received a quantum without waiting for its entire
stride.
This approach makes an implicit assumption that a

partial quantum now is equivalent to a partial quantum
later. In general, this is a reasonable assumption, and
resembles the treatment of nonuniform quanta that will
be presented Section 2.4. However, it may not be ap-
propriate if the total number of tickets competing for
a resource varies significantly between the time that a
client leaves and rejoins the system.
The time complexity for both the client leave() and

client join()operations is , where is the num-
ber of clients. These operations are efficient because the
stride scheduling state associated with distinct clients is
completely independent; a change to one client does not
require updates to any other clients. The cost
results from the need to perform queue manipulations.

2.3 Dynamic Ticket Modifications

Additional support is needed to dynamically modify
client ticket allocations. Figure 4 illustrates a dynamic
allocation change, and Figure 5 lists ANSI C code for

global pass to drift away from client pass values over a long period
of time. This is unlikely to be a practical problem, since client pass
values are recomputed using global pass each time they leave and
rejoin the system. However, this problem can be avoided by very
infrequently resetting global pass to the minimum pass value for the
set of active clients.

Several interesting alternatives could also be implemented. For
example, a client could be given credit for some or all of the passes
that elapse while it is inactive.
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1. QUESTION: How? 
2. Just give each one same # of tickets 
3. No need to adjust tickets for other clients 
4. (INFLATION) 

d. Compensation tickets 
i. QUESTION: What problem do they solve? 
ii. If use only fraction F of allocated resource, tickets 

inflated by 1/F until next starts to use resource 
iii. Makes client more likely to win lottery 

1. If run for N times shorter, should win N times 
more often to achieve same utilization! 

iv. Keep proportional share property 
v. Makes system more responsive for interactive 

processes, because expected waiting time is lower 
1.   

10. Uses 
a. Variable scheduling for simulation 

i. Prioritize computations with large error over those 
refining errors 

b. Donate tickets from client to server 
i. Encourages server to run faster and complete more 

quickly and be scheduled sooner 
c. Multimedia 

i. Degrading service when handling multiple clients; 
don’t want to freeze some out 

ii. Use proportional share based on weights 
11. Space-shared resources 

VMWARE	POLICY:	proportional	share	(we’ll	see	this	later)	

Key	idea:		

• some	pool	of	resources	R	
• Want	to	allocate	fractions	of	it	to	different	users	
• would	like	a	minimum	guarantee,	but	efficient	use	of	excess	capacity	
 
Solution:	

• give	each	user	a	set	of	shares,	like	stock	shares	in	a	company	
• value	of	a	share	is	#shares	/	total	#	shares—this	is	minimum	guarantee	
• At	any	time,	amount	of	resource	is	#	shares	/	total	#	shares	demanded	
• Shares	represent	relative	resource	rights	that	depend	on	the	total	number	

of	shares	contending	for	the	resource	
 



Idea:	under	heavy	use,	get	strict	proportion.	Under	light	use,	can	get	more	in	
proportion	to	others	who	want	more	and	their	shares/	
Way to think about it: everybody who wants a resource buys lottery 
tickets with shares. Winner picked at random from all shares bid. If 
not need, don’t buy tickets 
 
So: under full demand by everyone, all pay same price per page: 
shares / pages granted. When not everybody has full demand, 
some with fewer shares will get more pages 
 
RECLAMATION:	when	pages	needed,	search	for	VM	that	is	paying	the	least	for	its	
memory	(e.g.	got	some	memory	when	others	didn’t	want	it.)	

Algorithm:	dynamic	min-funding	revocation.	

Example	
VM	1:	100	shares	
VM	2:	100	shares	
 

Total	memory:	400	mb	
VM	1	starts	running,	acquire	256	mb	for	100	shares	

price	=	100/256	=	0.4	

VM2	starts	running,	gets	remainder:	144	MB	for	100	shares	

price	=	100/144	=	0.69	

When	VM2	wants	more	memory,	it	comes	from	VM1	
VM2	needs	more	pages,	asks	for	56	

	 VM2	price	=	100/200	=0.5	

	 VM1	price	=	100/200	=	0.5	

Now	VM1	has	200	MB,	VM1	has	200	MB,	both	pay	same	price	-	in	
equilibrium	
 
NOTE:	reclamation	is	kind	of	expensive;	need	to	activate	balloon	or	swap	pages.	

QUESTION:	is	this	the	right	policy?	It	doesn’t	guarantee	timeliness,	just	a	
minimum.		

NOTE:	Real	problem	is	not	minimum	guarantee,	but	how	to	efficiently	use	
memory	above	that.	

a.  
12. Nice properties 

a. Handles priority inversion 



i. Donate tickets to lock holder 
ii. Lock holder holds lottery when releasing to find next 

holder 
1. Gets tickets from all waiters 

b. Easy to donate resources – give them your tickets 
i. E.g. client/server model – client gives server tickets 
ii. All clients give server tickets, so runs longer to return 

more quickly 
c. When don’t use full resource quanta, are given tickets 

inversely proportional to used fraction (e.g. if use 1/5, get 4x 
tickets for next lottery), assuming next usage will be similar 

13. Issues 
a. Schedulers give higher priority to threads holding kernel 

resources (so they release them more quickly) 
i. Classic LS solution: contending users donate resources 

to holder 
1. Problem: Too expensive to hold lottery 
2. Problem: API for waiting not have enough 

information for lottery 
ii. Solution: Maintain priority queues for threads that 

woke up from being blocked on kernel resource; 
schedule these before holding lottery 

iii. Charge them tickets according to how long they ran 
from this method. 

b. Implementing NICE 
i. What does NICE do: ensure a process only runs if there 

are no higher-priority processes in the system 
ii. QUESTION: How do you do this with proportional share 

scheduling? 
1. Can’t really; want a priority mechanism not a 

proportional share. 
iii. Problem: lowering user-denominated tickets doesn’t 

help: 
1. QUESTION: Why? 

a. What if nice’d process is only one of a user 
– it will get entire user’s share 

iv. Issue: need to adjust priority relative to other users, 
not just to one user 

v. Solution: 
1. At scheduling time, adjust base tickets to be at 

most or at least a value proportional to NICE 
priority 

c. Supporting interactive users: issue 
i. Force context switch when sleeping process wakes up 



1. Pre-empted process gets appropriate 
compensation tickets 

ii. Issue: pre-empted cpu bound process with 
compensation tickets competes with i/o bound process 

1. Solution: see who has received less CPU than 
their # of tickets should indicate 

2. These are interactive, because they often block 
waiting for input 

3. Give them a boost – e.g. multiplicative factor to 
tickets. 

d. CPU is not the only resource; unclear how well you can 
balance between resources (despite the goal) 

14. My sense: 
a. Best used as a scheduler layer in a system with other 

schedulers as well. 
b. e.g. within a priority level 

15. Challenges 
a. Responsiveness for interactive tasks 

i. no guarantee of low latency 
ii.  


