
Events	vs	Threads	
	

1. Lottery	question:	should	I	present	the	basic	operation	of	lotteries?	Coverd	big	picture	on	
Tuesday.	

2. Presentation:	Sejal’s	group	
3. Questions	from	reading	

a. What	is	pinning?	
i. Reference	counting	so	resources	can’t	be	deleted	

b. How	used?	
c. Tail-call	optimization	
d. Closures:	

i. Set	of	things	available	locally.	Normally	gets	lost	when	thread	returns.	
Basic	problem:	to	handle	async	events,	want	to	get	it	back	again	when	
code	returns	

ii. In	Scheme:	can	explicitly	create	a	function	that	is	everything	else	in	the	
function	

4. Background:	events	and	threads	
a. Threads:		

i. State:	stack	+	registers	
1. Stack	allocated	without	knowing	how	much	space	is	needed,	is	

conservative	

2. 	
ii. Scheduled	by	generic	scheduler	

1. Kernel	threads:	preemptive	(guarantees	liveness,	more	or	less)	
2. User	threads:	non-preemptive	

iii. Code	style:	
1. Local	state	for	computation	stored	on	stack	
2. Invoke	a	sequence	of	(nested)	functions	to	perform	a	

computation	
3. Can	block	if	doing	blocking	operation	

iv. Concurrency	
1. Need	explicit	concurrency	mechanisms:	

a. Locks	for	mutual	exclusion	
b. Condition	variables	/	semaphores	for	coordination	

b. Example:	
i. Do_request(request) {	

1. Buffer	=	malloc();	
2. If (!cached(request,buffer,&length) {	

a. Disk_read(request,buffer, &length)	
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What Are Threads?

υ General-purpose solution for managing concurrency.

υ Multiple independent execution streams.

υ Shared state.

υ Pre-emptive scheduling.

υ Synchronization (e.g. locks, conditions).

Shared state
(memory, files, etc.)

Threads
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What Are Threads Used For?

υ Operating systems: one kernel thread for each user 
process.

υ Scientific applications: one thread per CPU (solve 
problems more quickly).

υ Distributed systems: process requests concurrently 
(overlap I/Os).

υ GUIs:
– Threads correspond to user actions;  can service 

display during long-running computations.
– Multimedia, animations.



3. }	
4. send_response(request-

>socket,buffer,length);	
5. close_socket(request->socket);	
6. free(request->buffer);	

ii. Notes:		
1. Thread	may	block	on	disk_read()	and	send_response()	

c. Events:	
i. How	used:	

ii. 	 	
1. Code	runs	non-preemptively	(within	the	process)	for	compute-

only	
2. All	blocking	operations	are	asynchronous	
3. Style	1:	explicit	events	&	handlers	

a. Code	following	blocking	operation	woken	via	generic	event	
wakeup	mechanism:	

i. handler	=	new	event(callback_fn,	param);	
ii. event		=	async_disk_read(request,buffer,&length);	
iii. register_handler(event,handler);	

4. Style	2:	callback	functions	as	parameters,	invoked	on	a	separate	
stack	later:	

a. event		=	
async_disk_read(request,buffer,&length,callback_fn,para
m);	

b. Question:	where	does	callback_fn	run?	
i. When	some	thread	decides	to	start	running	

callbacks	–	e.g.	SleepEx()	in	Windows	
5. blocking	function	returns	immediately.	Async	call	signals	handler	

when	runs	
6. “short	circuit”	–	if	code	doesn’t	need	to	block,	it	can	complete	

invoke	the	continuation	immediately	(synchronously)	or	return	
indicating	it	didn’t	block	

7. One	or	more	event	loops	detect	signaling	and	invoke	handler	
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Event-Driven Programming

υ One execution stream: no CPU 
concurrency.

υ Register interest in events 
(callbacks).

υ Event loop waits for events, 
invokes handlers.

υ No preemption of event 
handlers.

υ Handlers generally short-lived.

Event
Loop

Event Handlers
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What Are Events Used For?

υ Mostly GUIs:
– One handler for each event (press button, invoke menu 

entry, etc.).
– Handler implements behavior (undo, delete file, etc.).

υ Distributed systems:
– One handler for each source of input (socket, etc.).
– Handler processes incoming request, sends response.
– Event-driven I/O for I/O overlap.
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8. “continuations”	–	the	rest	of	the	computation.		
a. For	example,	what	you	run	when	a	function	returns	
b. Or,	if	block,	the	remainder	of	the	function	

iii. Where	used:	
1. UI	code:	waiting	for	UI	events	
2. Network	code:	waiting	for	network	packets	

iv. Calling	functions	from	event	handler	
1. Can	call	any	non-blocking	function	
2. If	call	blocking	function,	need	to	split	code	and	make	everything	

after	the	blocking	code	a	new	event	---	a	“continuation”	
a. May	duplicate	code	in	original	and	continuation	

v. State	management:	
1. Cannot	store	state	on	stack,	as	calling	function	returns	to	event	

loop	when	blocking	
2. Need	to	save	state	in	a	structure	passed	as	a	parameter	to	event	

handler	
vi. Concurrency:	

1. Mutual	exclusion:	
a. Can	ensure	that	event	handlers	run	to	completion	(no	

blocking	operations)	for	uniprocessor	
b. If	can	partition	handlers	based	on	state,	can	run	handlers	

without	locks	
c. Event	dispatcher	guarantees	only	one	handler	at	a	time	

executes	
2. Coordination	

a. Can	explicitly	signal	event	for	following	code,	not	need	
semaphores/mutex	variables	

vii. Note:	implemented	on	top	of	kernel	threads!	
d. What	are	benefits	of	events?	

i. Easier	(?)	synchronization/concurrency:	
1. Not	need	locks	

a. Need	to	partition	events	to	say	which	cannot	be	handled	
concurrently	(assign	a	‘color’)	

2. Not	need	complex	condition	variable	code	
3. Fewer	races,	deadlocks	

ii. Better	control	over	scheduling	
1. Can	control	which	order	events	get	handled	in	code	
2. Example:		

a. In	a	web	server,	can	decide	to	prioritize	accepting	socket	
connections	over	disk	reads	or	prioritize	some	customers	
over	others	

3. Under	overload:		
a. Can	cancel	events	–	signal	error	–	rather	than	completing	
b. Gives	control	over	how	load	is	shed	



c. Comparison:	with	threads	(1	per	request),	just	have	to	
many	thread,	no	way	to	cancel	or	control	when	scheduled	

iii. Less	memory	consumption	
1. Only	allocate	enough	space	for	state	needed	in	continuations	

rather	than	a	worst-case	stack	
iv. More	concurrency:	

1. Blocking	is	explicit	so	never	block	with	locks	held	
v. More	modular	

1. If	make	a	function	block,	callers	know	because	must	pass	in	
continuation	(what	to	invoke	when	routine	completes),	but	callers	
must	change	

vi. Can	debug	some	kinds	of	problems	easier	
1. Latency:	why	isn’t	something	running	yet	(what	is	in	queue	ahead)	

e. What	are	benefits	of	threads?	
i. Natural	programming	style	for	many	people	
ii. Easy	state	management:	local	variables	
iii. More	modular:		

1. A	function	can	block	without	changing	code	of	calling	function	
2. But:	not	modular	for	performance,	as	making	something	block	can	

hurt	performance	
iv. No	need	to	decide	what	thread	to	run	

1. Scheduling	handled	automatically	by	generic	thread	scheduler,	
runs	everything	eventually	

v. Debugging	
1. Have	call	stack	indicating	what	thread	has	been	doing	
2. With	events,	hard	to	figure	out	why	an	event	was	not	triggered,	

what	it	is	waiting	on.	
a. “Control	flow	is	divided	into	many	cooperatively-

scheduled	callback	functions,	obscuring	context	and	
programmer	intent.	This	makes	it	hard	to	write	event-
driven	programs	and,	worse,	hard	to	analyze	and	debug	
them	when	they	go	wrong.”	

b. Hard	to	see	what	the	path	of	execution	was	to	an	event,	to	
understand	what	the	order	should	be	as	code	is	not	linear	

5. Religious	debate	among	people	writing	high-concurrency	servers	
a. Pro-event:	John	Ousterhout	(Stanford,	from	Berkeley);	Dave	Mazieres,	Frans	

Kaashoek,	Robert	Morris	(MIT)	
b. Pro-thread:	Eric	Brewer	(Berkely)	

i. Used	threads	for	Inktomi	search	engine,	sold	for	a	billion	dollars	to	Excite	
ii. Now	Chief	of	platforms	at	Google	

c. Chief	pro-event	arguments:	
i. Better	concurrency	control	
ii. Better	scheduling	control	
iii. Less	memory	usage	



iv. Easier	to	program	–	less	complex	sync.	Code	
v. Faster:	no	preemptions,	lock	operations	

d. Pro-thread	arguments:	
i. More	modular	(no	stack	ripping)	
ii. Easier	to	debug	
iii. Easier	to	program	(more	natural	for	some)	
iv. Better	exception	handling;	clear	what	to	clean	up	

e. Resolution:	
i. Make	event	code	more	like	threads	(this	paper),	MIT	work	
ii. Make	thread	code	more	like	events	(Capriccio	from	Berkeley)	by		

1. making	stacks	precise,	make	everything	faster,		
2. allow	explicit	thread	scheduling	based	on	resources	from	program	

(e.g.,	dispatch	next	event	immediately	rather	than	returning	to	
generic	event	loop)	

a. Switch	from	one	thread	to	another	specifically	
(switch_to())	rather	than	yielding	to	scheduler	(yield())	

b. Like	LRPC	handoff	
6. This	paper:	how	to	combine	event	handling	code	with	threaded	code	

a. Big	goal:	avoid	“stack	ripping”	when	calling	blocking	code	
i. Allows	modularity,	reuse	of	existing	code	

b. Tool:	cooperative	threads	
i. User-mode	threads	
ii. Explicit	“switch-to”	semantics;	no	general	scheduler	assumed	
iii. Can	be	used	to	save	state	automatically	rather	than	in	

continuations/events	
c. Problem:	stack	ripping:	

i. Given	function:	

1. 	
2. Assumes	automatic	stack	management:	caInfo	stored	on	stack	

along	with	caID	to	be	invoked	when	disk	read	completes	
ii. How	make	into	a	non-blocking	code?	

1. Split	into	two	functions:	

ming language “structured;” in the diagram, this point is
labeled the “sweet spot.”

3 Stack management

Given our diagram one might ask, “what are the pros and
cons of the two forms of stack management? We address
that question here. We present the principal advantages
and disadvantages of each form, emphasizing how soft-
ware evolution exacerbates the disadvantages of each.
We also present a technique that mitigates the principal
disadvantage of automatic stack management.

3.1 Automatic versus manual

Programmers can express a task employing either auto-
matic stack management or manual stack management.
With automatic stack management, the programmer ex-
presses each complete task as a single procedure in the
source language. Such a procedure may call functions
that block on I/O operations such as disk or remote re-
quests. While the task is waiting on a blocking opera-
tion, its current state is kept in data stored on the pro-
cedure’s program stack. This style of control flow is
one meaning often associated with the term “procedure-
oriented.”

In contrast, manual stack management requires a pro-
grammer to rip the code for any given task into event
handlers that run to completion without blocking. Event
handlers are procedures that can be invoked by an event-
handling scheduler in response to events, such as the
initiation of a task or the response from a previously-
requested I/O. To initiate an I/O, an event handler “E1”
schedules a request for the operation but does not wait
for the reply. Instead, E1 registers a task-specific object
called a continuation [FHK84] with the event-handling
scheduler. The continuation bundles state indicating
where E1 left off working on the task, plus a reference
to a different event-handler procedure E2 that encodes
what should be done when the requested I/O has com-
pleted. After having initiated the I/O and registering the
continuation, E1 returns control to the event-handling
scheduler. When the event representing the I/O com-
pletion occurs, the event-handling scheduler calls E2,
passing E1’s bundled state as an argument. This style
of control flow is often associated with the term “event-
driven.”

To illustrate these two stack-management styles, con-

sider the code for a function, GetCAInfo, that looks
in an in-memory hash table for a specified certificate-
authority id and returns a pointer to the corresponding
object. A certificate authority is an entity that issues cer-
tificates, for example for users of a file system.

CAInfo GetCAInfo(CAID caId) {
CAInfo caInfo = LookupHashTable(caId);
return caInfo;

}

Suppose that initially this function was designed to han-
dle a few globally known certificate authorities and
hence all the CA records could be stored in memory. We
refer to such a function as a compute-only function: be-
cause it does not pause for I/O, we need not consider
how its stack is managed across an I/O call, and thus the
automatic stack management supplied by the compiler is
always appropriate.

Now suppose the function evolves to support an abun-
dance of CA objects. We may wish to convert the hash
table into an on-disk structure, with an in-memory cache
of the entries in use. GetCAInfo has become a func-
tion that may have to yield for I/O. How the code evolves
depends on whether it uses automatic or manual stack
management.

Following is code with automatic stack management that
implements the revised function:

CAInfo GetCAInfoBlocking(CAID caId) {
CAInfo caInfo = LookupHashTable(caId);
if (caInfo != NULL) {
// Found node in the hash table
return caInfo;

}
caInfo = new CAInfo();
// DiskRead blocks waiting for
// the disk I/O to complete.
DiskRead(caId, caInfo);
InsertHashTable(caId, CaInfo);
return caInfo;

}

To achieve the same goal using manual stack
management, we rip the single conceptual func-
tion GetCAInfoBlocking into two source-language
functions, so that the second function can be called from
the event-handler scheduler to continue after the disk
I/O has completed. Here is the continuation object that
stores the bundled state and function pointer:

class Continuation {



a. 	
b. Note	it	calls	caller	continuation	when	done;	does	not	

resume	caller	by	just	“returning”	
c. State	needed	is	passed	into	continuation	

2. On	disk-read	complete:	

a. 		
3. Note:	need	to	take	everything	after	the	disk	read,	move	to	new	

event	and	make	callable	after	disk	read	–	“rip	the	stack”	
d. Solution:		

i. Big	idea:	lightweight	threads	to	store	state	
1. Can	easily	switch	to	another	thread	or	resume	the	thread	

ii. Calling	threaded	code	from	event	based	code:	
1. Run	threaded	code	on	another	fiber	

a. Allows	returning	immediately	instead	of	blocking	

// The function called when this
// continuation is scheduled to run.
void (∗function)(Continuation cont);
// Return value set by the I/O operation.
// To be passed to continuation.
void ∗returnValue
// Bundled up state
void ∗arg1, ∗arg2, ...;

}

Here is the original function, ripped into the two parts
that function as event handlers:

void GetCAInfoHandler1(CAID caId,
Continuation ∗callerCont)

{
// Return the result immediately if in cache
CAInfo ∗caInfo = LookupHashTable(caId);
if (caInfo != NULL) {
// Call caller’s continuation with result
(∗callerCont−>function)(caInfo);
return;

}

// Make buffer space for disk read
caInfo = new CAInfo();
// Save return address & live variables
Continuation ∗cont = new
Continuation(&GetCAInfoHandler2,

caId, caInfo, callerCont);
// Send request
EventHandle eh =

InitAsyncDiskRead(caId, caInfo);
// Schedule event handler to run on reply
// by registering continuation
RegisterContinuation(eh, cont);

}

void GetCAInfoHandler2(Continuation
∗cont) {

// Recover live variables
CAID caId = (CAID) cont−>arg1;
CAInfo ∗caInfo = (CAInfo∗) cont−>arg2;
Continuation ∗callerCont =

(Continuation∗) cont−>arg3;
// Stash CAInfo object in hash
InsertHashTable(caId, caInfo);
// Now “return” results to original caller
(∗callerCont−>function)(callerCont);

}

Note that the signature of GetCAInfo is different from
that of GetCAInfoHandler1. Since the desired re-

sult from what used to be GetCAInfowill not be avail-
able until GetCAInfoHandler2 runs sometime later,
the caller of GetCAInfoHandler1 must pass in a
continuation that GetCAInfoHandler2 can later in-
voke in order to return the desired result via the continu-
ation record. That is, with manual stack management, a
statement that returns control (and perhaps a value) to a
caller must be simulated by a function call to a continu-
ation procedure.

3.2 Stack Ripping

In conventional systems languages, such as C++, which
have no support for closures, the programmer has to do a
substantial amount of manual stack management to yield
for I/O operations. Note that the function in the previ-
ous section was ripped into two parts because of one I/O
call. If there are more I/O calls, there are even more rips
in the code. The situation gets worse still with the pres-
ence of control structures such as for loops. The pro-
grammer deconstructs the language stack, reconstructs
it on the heap, and reduces the readability of the code in
the process.

Furthermore, debugging is impaired because when the
debugger stops in GetCAInfoHandler2, the call
stack only shows the state of the current event han-
dler and provides no information about the sequence of
events that the ripped task performed before arriving at
the current event handler invocation. Theoretically, one
can manually recover the call stack by tracing through
the continuation objects; in practice we have observed
that programmers hand-optimize away tail calls, so that
much of the stack goes missing.

In summary, for each routine that is ripped, the program-
mer will have to manually manage procedural language
features that are normally handled by a compiler:

function scoping Now two or more language functions
represent a single conceptual function.

automatic variables Variables once allocated on the
stack by the language must be moved into a new
state structure stored on the heap to survive across
yield points.

control structures The entry point to every basic block
containing a function that might block must be
reachable from a continuation, and hence must be
a separate language-level function. That is, con-
ceptual functions with loops must be ripped into
more than two pieces.
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2. Make	threaded	code	signal	following	event	when	completes	(like	
calling	exit()	when	main()	returns)	

a. Example:	to	invoke	a	call:	

i. 		
ii. verifyCertFiber	invokes	startfunction:	

iii. 	
1. Note:	verifyCert()	invokes	main	fiber	if	it	

blocks,	which	resumes	calling	event	
(VeryCertCFA),	so	it	doesn’t	block	

iv. Schedules	continuation	then	returns	to	main	fiber	

v. 	
vi. Executes	continuation	from	event-style	code	

b. Net:		
i. thread	blocking	handled	separately	on	a	different	

thread	with	stack	for	local	variables	
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Figure 2: GetCertData, code with manual stack man-
agement, calls VerifyCert, a function written with
automatic stack management.

run and block for I/O several times; when it finishes its
work on behalf of the caller, it executes the caller’s con-
tinuation to resume the caller’s part of the task. Thus,
the caller code does not block and the callee code can
block if it wishes.

In our example, the manual-stack-management func-
tion FetchCert2 calls through an adapter to the
automatic-stack-management function VerifyCert.
FetchCert2 passes along a continuation pointing at
FetchCert3 so that it can eventually regain control
and execute the final part of its implementation. The fol-
lowing code is for the CFA adaptor, ripped into its call
and return parts; CFA stands for “Continuation-To-Fiber
adaptor.”

void VerifyCertCFA(CertData certData,

Continuation ∗callerCont) {
// Executed on MainFiber
Continuation ∗vcaCont = new

Continuation(VerifyCertCFA2,

callerCont);

Fiber ∗verifyFiber = new

VerifyCertFiber(certData, vcaCont);

// On fiber verifyFiber, start executing
// VerifyCertFiber::FiberStart
SwitchToFiber(verifyFiber);

// Control returns here when
// verifyFiber blocks on I/O

}

void VerifyCertCFA2(Continuation

∗vcaCont) {
// Executed on MainFiber.
// Scheduled after verifyFiber is done
Continuation ∗callerCont =

(Continuation∗) vcaCont−>arg1;

callerCont−>returnValue =

vcaCont−>returnValue;

// “return” to original caller (FetchCert)
(∗callerCont−>function)(callerCont);

}

The first adaptor function accepts the arguments
of the adapted function and a continuation (“stack
frame”) for the calling task. It constructs its own
continuation vcaCont and creates a object called
verifyFiber that represents a new fiber (VerifyC-
ertFiber is a subclass of the Fiber class); this object
keeps track of the function arguments and vcaCont
so that it can transfer control to VerifyCertCFA2
when verifyFiber’s work is done. Finally, it
performs a fiber-switch to verifyFiber. When
verifyFiber begins, it executes glue routine

VerifyCertFiber::FiberStart to unpack the
parameters and pass them to VerifyCert, which may
block on I/O:

VerifyCertFiber::FiberStart() {
// Executed on a fiber other than MainFiber
// The following call could block on I/O.
// Do the actual verification.
this−>vcaCont−>returnValue =

VerifyCert(this−>certData);

// The verification is complete.
// Schedule VerifyCertCFA2
scheduler−>schedule(this−>vcaCont);

SwitchTo(MainFiber);

}

This start function simply calls into the func-
tion VerifyCert. At some point, when
VerifyCert yields for I/O, it switches control
back to the MainFiber using a SwitchTo call
in the I/O function (not the call site shown in the
FiberStart() routine above). Control resumes
in VerifyCertCFA, which unrolls the continuation
stack (i.e., GetCertData2 and FetchCert2)
back to the scheduler. Thus, the hybrid task has
blocked for the I/O initiated by the code with automatic
stack management while ensuring that event handler
FetchCert2 does not block.

Later, when the I/O completes, verifyFiber is
resumed (for now, we defer the details on how
this resumption occurs). After VerifyCert has
performed the last of its work, control returns to
FiberStart. FiberStart stuffs the return value
into VerifyCertCFA2’s continuation, schedules it to
execute, and switches back to the MainFiber a final
time. At this point, verifyFiber is destroyed. When
VerifyCertCFA2 executes, it “returns” (with a func-
tion call, as code with manual stack management nor-
mally does) the return value from VerifyCert back
to the adaptor-caller’s continuation, FetchCert3.

4.2 Automatic calling manual

We now discuss how the code interactions occur when a
function with automatic stack management calls a func-
tion that manually manages its stack. In this case, the
former function needs to block for I/O, but the latter
function simply schedules the I/O and returns. To recon-
cile these requirements, we supply an adaptor that calls
the manual-stack-management code with a special con-
tinuation and relinquishes control to the MainFiber,
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Figure 3: VerifyCert, code with automatic stack
management, calls GetCAInfo, a function written with
manual stack management.
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Figure 2: GetCertData, code with manual stack man-
agement, calls VerifyCert, a function written with
automatic stack management.

run and block for I/O several times; when it finishes its
work on behalf of the caller, it executes the caller’s con-
tinuation to resume the caller’s part of the task. Thus,
the caller code does not block and the callee code can
block if it wishes.

In our example, the manual-stack-management func-
tion FetchCert2 calls through an adapter to the
automatic-stack-management function VerifyCert.
FetchCert2 passes along a continuation pointing at
FetchCert3 so that it can eventually regain control
and execute the final part of its implementation. The fol-
lowing code is for the CFA adaptor, ripped into its call
and return parts; CFA stands for “Continuation-To-Fiber
adaptor.”

void VerifyCertCFA(CertData certData,

Continuation ∗callerCont) {
// Executed on MainFiber
Continuation ∗vcaCont = new

Continuation(VerifyCertCFA2,

callerCont);

Fiber ∗verifyFiber = new

VerifyCertFiber(certData, vcaCont);

// On fiber verifyFiber, start executing
// VerifyCertFiber::FiberStart
SwitchToFiber(verifyFiber);

// Control returns here when
// verifyFiber blocks on I/O

}

void VerifyCertCFA2(Continuation

∗vcaCont) {
// Executed on MainFiber.
// Scheduled after verifyFiber is done
Continuation ∗callerCont =

(Continuation∗) vcaCont−>arg1;

callerCont−>returnValue =

vcaCont−>returnValue;

// “return” to original caller (FetchCert)
(∗callerCont−>function)(callerCont);

}

The first adaptor function accepts the arguments
of the adapted function and a continuation (“stack
frame”) for the calling task. It constructs its own
continuation vcaCont and creates a object called
verifyFiber that represents a new fiber (VerifyC-
ertFiber is a subclass of the Fiber class); this object
keeps track of the function arguments and vcaCont
so that it can transfer control to VerifyCertCFA2
when verifyFiber’s work is done. Finally, it
performs a fiber-switch to verifyFiber. When
verifyFiber begins, it executes glue routine
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thereby causing the adaptor’s caller to remain blocked.
When the I/O completes, the special continuation runs
on the MainFiber and resumes the fiber of the blocked
adaptor, which resumes the original function waiting for
the I/O result.

Figure 3 fills in the missing details of Figure 2 to illus-
trate this interaction. In this example, VerifyCert
blocks on I/O when it calls GetCAInfo, a function
with manual stack management. VerifyCert calls
the adaptor GetCAInfoFCA, which hides the manual-
stack-management nature of GetCAInfo (FCA means
Fiber-to-Continuation Adaptor):

Boolean GetCAInfoFCA(CAID caid) {
// Executed on verifyFiber
// Get a continuation that switches control
// to this fiber when called on MainFiber
FiberContinuation ∗cont = new

FiberContinuation(FiberContinue,
this);

GetCAInfo(caid, cont);
if (!cont−>shortCircuit) {
// GetCAInfo did block.
SwitchTo(MainFiber);

}
return cont−>returnValue;

}

void FiberContinue(Continuation ∗cont) {
if (!Fiber::OnMainFiber()) {
// Manual stack mgmt code did not perform
// I/O: just mark it as short-circuited
FiberContinuation ∗fcont =

(FiberContinuation) ∗cont;
fcont−>shortCircuit = true;

} else {
// Resumed after I/O: simply switch
// control to the original fiber
Fiber ∗f = (Fiber ∗) cont−>arg1;
f−>Resume();

}
}

The adaptor, GetCAInfoFCA, sets up a special con-
tinuation that will later resume verifyFiber via the
code in FiberContinue. It then passes this continua-
tion to GetCAInfowhich initiates an I/O operation and
returns immediately to what it believes to be the event-
handling scheduler; of course, in this case, the con-
trol returns to GetCAInfoFCA. Since I/O was sched-
uled and short-circuiting did not occur (discussed later
in this section), GetCAInfoFCA must ensure that con-
trol does not yet return to VerifyCert; to achieve this

effect, it switches control to the MainFiber.

On the MainFiber, the continuation code that
started this burst of fiber execution, VerifyCertCFA,
returns several times to unroll its stack and the sched-
uler runs again. Eventually, the I/O result arrives and the
scheduler executes GetCAInfo2, the remaining work
of GetCAInfo. GetCAInfo2 fills the local hash ta-
ble (recall its implementation from Section 3.1) and “re-
turns” control by calling a continuation. In this case,
it calls the continuation (FiberContinue) that had
been passed to GetCAInfo.

FiberContinue notices that verifyFiber has
indeed been blocked and switches control back to
that fiber, where the bottom half of the adaptor,
GetCAInfoFCA, extracts the return value and passes it
up to the automatic-stack-management code that called
it (VerifyCert).

The short circuit branch not followed in the example
handles the case where GetCAInfo returns a result
immediately without waiting for I/O. When it can do
so, it must not allow control to pass to the scheduler.
This is necessary so that a caller can optionally deter-
mine whether or not a routine has yielded control and
hence whether or not local state must be revalidated.
Without a short circuit path, this important optimiza-
tion and an associated design pattern that we describe
in Section 5 cannot be achieved. Figure 4 illustrates
the short-circuit sequence: The short-circuit code de-
tects the case where GetCAInfo runs locally, performs
no I/O, and executes (“returns to”) the current contin-
uation immediately. FiberContinue detects that it
was not executed directly by the scheduler, and sets
the shortCircuit flag to prevent the adaptor from
switching to the MainFiber.

4.3 Discussion

An important observation is that, with adaptors in place,
each style of code is unaware of the other. A function
written with automatic stack management sees what it
expects: deep in its stack, control may transfer away,
and return later with the stack intact. Likewise, the
event-handler scheduler cannot tell that it is calling any-
thing other than just a series of ordinary manual-stack-
management continuations: the adaptors deftly swap the
fiber stacks around while looking like any other continu-
ation. Thus, integrating code in the two styles is straight-
forward: fiber execution looks like a continuation to the
event-driven code, and the continuation scheduler looks

thereby causing the adaptor’s caller to remain blocked.
When the I/O completes, the special continuation runs
on the MainFiber and resumes the fiber of the blocked
adaptor, which resumes the original function waiting for
the I/O result.

Figure 3 fills in the missing details of Figure 2 to illus-
trate this interaction. In this example, VerifyCert
blocks on I/O when it calls GetCAInfo, a function
with manual stack management. VerifyCert calls
the adaptor GetCAInfoFCA, which hides the manual-
stack-management nature of GetCAInfo (FCA means
Fiber-to-Continuation Adaptor):

Boolean GetCAInfoFCA(CAID caid) {
// Executed on verifyFiber
// Get a continuation that switches control
// to this fiber when called on MainFiber
FiberContinuation ∗cont = new

FiberContinuation(FiberContinue,
this);

GetCAInfo(caid, cont);
if (!cont−>shortCircuit) {
// GetCAInfo did block.
SwitchTo(MainFiber);

}
return cont−>returnValue;

}

void FiberContinue(Continuation ∗cont) {
if (!Fiber::OnMainFiber()) {
// Manual stack mgmt code did not perform
// I/O: just mark it as short-circuited
FiberContinuation ∗fcont =

(FiberContinuation) ∗cont;
fcont−>shortCircuit = true;

} else {
// Resumed after I/O: simply switch
// control to the original fiber
Fiber ∗f = (Fiber ∗) cont−>arg1;
f−>Resume();

}
}

The adaptor, GetCAInfoFCA, sets up a special con-
tinuation that will later resume verifyFiber via the
code in FiberContinue. It then passes this continua-
tion to GetCAInfowhich initiates an I/O operation and
returns immediately to what it believes to be the event-
handling scheduler; of course, in this case, the con-
trol returns to GetCAInfoFCA. Since I/O was sched-
uled and short-circuiting did not occur (discussed later
in this section), GetCAInfoFCA must ensure that con-
trol does not yet return to VerifyCert; to achieve this

effect, it switches control to the MainFiber.

On the MainFiber, the continuation code that
started this burst of fiber execution, VerifyCertCFA,
returns several times to unroll its stack and the sched-
uler runs again. Eventually, the I/O result arrives and the
scheduler executes GetCAInfo2, the remaining work
of GetCAInfo. GetCAInfo2 fills the local hash ta-
ble (recall its implementation from Section 3.1) and “re-
turns” control by calling a continuation. In this case,
it calls the continuation (FiberContinue) that had
been passed to GetCAInfo.

FiberContinue notices that verifyFiber has
indeed been blocked and switches control back to
that fiber, where the bottom half of the adaptor,
GetCAInfoFCA, extracts the return value and passes it
up to the automatic-stack-management code that called
it (VerifyCert).

The short circuit branch not followed in the example
handles the case where GetCAInfo returns a result
immediately without waiting for I/O. When it can do
so, it must not allow control to pass to the scheduler.
This is necessary so that a caller can optionally deter-
mine whether or not a routine has yielded control and
hence whether or not local state must be revalidated.
Without a short circuit path, this important optimiza-
tion and an associated design pattern that we describe
in Section 5 cannot be achieved. Figure 4 illustrates
the short-circuit sequence: The short-circuit code de-
tects the case where GetCAInfo runs locally, performs
no I/O, and executes (“returns to”) the current contin-
uation immediately. FiberContinue detects that it
was not executed directly by the scheduler, and sets
the shortCircuit flag to prevent the adaptor from
switching to the MainFiber.

4.3 Discussion

An important observation is that, with adaptors in place,
each style of code is unaware of the other. A function
written with automatic stack management sees what it
expects: deep in its stack, control may transfer away,
and return later with the stack intact. Likewise, the
event-handler scheduler cannot tell that it is calling any-
thing other than just a series of ordinary manual-stack-
management continuations: the adaptors deftly swap the
fiber stacks around while looking like any other continu-
ation. Thus, integrating code in the two styles is straight-
forward: fiber execution looks like a continuation to the
event-driven code, and the continuation scheduler looks
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